Object recognition and location has always been one of the research hotspots in machine vision.It is of great value and significance to the development and application of current service robots,industrial automation,u...Object recognition and location has always been one of the research hotspots in machine vision.It is of great value and significance to the development and application of current service robots,industrial automation,unmanned driving and other fields.In order to realize the real-time recognition and location of indoor scene objects,this article proposes an improved YOLOv3 neural network model,which combines densely connected networks and residual networks to construct a new YOLOv3 backbone network,which is applied to the detection and recognition of objects in indoor scenes.In this article,RealSense D415 RGB-D camera is used to obtain the RGB map and depth map,the actual distance value is calculated after each pixel in the scene image is mapped to the real scene.Experiment results proved that the detection and recognition accuracy and real-time performance by the new network are obviously improved compared with the previous YOLOV3 neural network model in the same scene.More objects can be detected after the improvement of network which cannot be detected with the YOLOv3 network before the improvement.The running time of objects detection and recognition is reduced to less than half of the original.This improved network has a certain reference value for practical engineering application.展开更多
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i...Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks.展开更多
An efficient and robust iris location algorithm plays a very important role in a real iris recognition system. A novel and efficient iris automatic location method is presented in this study. It includes following two...An efficient and robust iris location algorithm plays a very important role in a real iris recognition system. A novel and efficient iris automatic location method is presented in this study. It includes following two steps mainly: pu- pil location and iris outer boundary location. A digital eye image was divided into many small rectangular blocks with fixed size in the pupil location, and the block with the smallest average intensity was selected as a reference area. Then image binarization was implemented taking the average intensity of the reference area as a threshold. At last the center coordinates and radius of pupil were estimated by extending the reference area to the pupil's boundaries in the binary iris image. In the iris outer location, two local parts of the eye image were selected and transformed into polar coordinates from Cartesian reference. In order to detect the fainter outer boundary of the iris quickly, a novel edge detector was used to locate boundaries of the two parts. The center coordinates and radius of the iris outer boundary can be estimated using the fusion of the locating results of the two local parts and the location information of the pupil. The algorithm was tested on CASIA vl.0 and MMU vl.0 digital eye image databases and experimental results show that the proposed method has satisfying performance and good robustness.展开更多
Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location ...Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.展开更多
A new scene recognition system was presented based on fuzzy logic and hidden Markov model(HMM)that can be applied in mine rescue robot localization during emergencies.The system uses monocular camera to acquire omni-d...A new scene recognition system was presented based on fuzzy logic and hidden Markov model(HMM)that can be applied in mine rescue robot localization during emergencies.The system uses monocular camera to acquire omni-directional images of the mine environment where the robot locates.By adopting center-surround difference method,the salient local image regions are extracted from the images as natural landmarks.These landmarks are organized by using HMM to represent the scene where the robot is,and fuzzy logic strategy is used to match the scene and landmark.By this way,the localization problem,which is the scene recognition problem in the system,can be converted into the evaluation problem of HMM.The contributions of these skills make the system have the ability to deal with changes in scale,2D rotation and viewpoint.The results of experiments also prove that the system has higher ratio of recognition and localization in both static and dynamic mine environments.展开更多
This paper presents a set of algorithms capable of locating main facial features automatically and effectively. Based on integral projection of local binary image pixels and pixel clustering techniques, a set of a p...This paper presents a set of algorithms capable of locating main facial features automatically and effectively. Based on integral projection of local binary image pixels and pixel clustering techniques, a set of a priori knowledge based algorithms have succeeded in locating eyes, nose and mouth, and uprighting the tilt face. The proposed approach is superior to other methods as it takes account of photos with glasses and sha dows, therefore suitable for processing real ID type photos.展开更多
Accurate sag source location and precise sag type recognition are both essential to verifying the responsible party for the sag and taking countermeasures to improve power quality.In this paper,an attention-based inde...Accurate sag source location and precise sag type recognition are both essential to verifying the responsible party for the sag and taking countermeasures to improve power quality.In this paper,an attention-based independently recurrent neural network(IndRNN)for sag source location and sag type recognition in sparsely monitored power system is proposed.Specially,the given inputs are voltage waveforms collected by limited meters in sparsely monitored power system,and the desired outputs simultaneously contain the following information:the located lines where sag occurs;the corresponding sag types,including motor starting,transformer energizing and short circuit;and the fault phase for short circuit.In essence,the responsibility of the proposed method is to automatically establish a nonlinear function that relates the given inputs to the desired outputs with categorization labels as few as possible.A favorable feature of the proposed method is that it can be realized without system parameters or models.The proposed method is validated by IEEE 30-bus system and a real 134-bus system.Experimental results demonstrate that the accuracy of sag source location is higher than 99%for all lines,and the accuracy of sag type recognition is also higher than 99%for various sag sources including motor starting,transformer energizing and 7 different types of short circuits.Furthermore,a comparison among different monitor placements for the proposed method is conducted,which illustrates that the observability of power networks should be ensured to achieve satisfactory performance.展开更多
Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in th...Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental condi- tions, without using a set of infrared light emitting diodes (LEDs) on the parachute part of the dro- gue. Secondly, considering camera lens distortion, a monocular vision measurement algorithm for drogue 3D locating is designed to ensure the accuracy and real-time performance of the system, with the drogue attitude provided. Finally, experiments are conducted to demonstrate the effective- ness of the proposed method. Experimental results show the performances of the entire system in contrast with other methods, which validates that the proposed method can recognize and locate the drogue three dimensionally, rapidly and precisely.展开更多
基金supported by Henan Province Science and Technology Project under Grant No.182102210065.
文摘Object recognition and location has always been one of the research hotspots in machine vision.It is of great value and significance to the development and application of current service robots,industrial automation,unmanned driving and other fields.In order to realize the real-time recognition and location of indoor scene objects,this article proposes an improved YOLOv3 neural network model,which combines densely connected networks and residual networks to construct a new YOLOv3 backbone network,which is applied to the detection and recognition of objects in indoor scenes.In this article,RealSense D415 RGB-D camera is used to obtain the RGB map and depth map,the actual distance value is calculated after each pixel in the scene image is mapped to the real scene.Experiment results proved that the detection and recognition accuracy and real-time performance by the new network are obviously improved compared with the previous YOLOV3 neural network model in the same scene.More objects can be detected after the improvement of network which cannot be detected with the YOLOv3 network before the improvement.The running time of objects detection and recognition is reduced to less than half of the original.This improved network has a certain reference value for practical engineering application.
基金This research was partly supported by the National Science and Technology Council,Taiwan with Grant Numbers 112-2221-E-992-045,112-2221-E-992-057-MY3 and 112-2622-8-992-009-TD1.
文摘Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks.
基金Projects 6057201 supported by the National Natural Science Foundation of ChinaLZ985-231-582627 by the 985 Special Study Project of Lanzhou University
文摘An efficient and robust iris location algorithm plays a very important role in a real iris recognition system. A novel and efficient iris automatic location method is presented in this study. It includes following two steps mainly: pu- pil location and iris outer boundary location. A digital eye image was divided into many small rectangular blocks with fixed size in the pupil location, and the block with the smallest average intensity was selected as a reference area. Then image binarization was implemented taking the average intensity of the reference area as a threshold. At last the center coordinates and radius of pupil were estimated by extending the reference area to the pupil's boundaries in the binary iris image. In the iris outer location, two local parts of the eye image were selected and transformed into polar coordinates from Cartesian reference. In order to detect the fainter outer boundary of the iris quickly, a novel edge detector was used to locate boundaries of the two parts. The center coordinates and radius of the iris outer boundary can be estimated using the fusion of the locating results of the two local parts and the location information of the pupil. The algorithm was tested on CASIA vl.0 and MMU vl.0 digital eye image databases and experimental results show that the proposed method has satisfying performance and good robustness.
文摘Vehicle recognition system (VRS) plays a very important role in the field of intelligent transportation systems.A novel and intuitive method is proposed for vehicle location.The method we provide for vehicle location is based on human visual perception model technique. The perception color space HSI in this algorithm is adopted.Three color components of a color image and more potential edge patterns are integrated for solving the feature extraction problem.A fast and automatic threshold technique based on human visual perception model is also developed.The vertical edge projection and horizontal edge projection are adopted for locating left-right boundary of vehicle and top-bottom boundary of vehicle, respectively. Very promising experimental results are obtained using real-time vehicle image sequences, which have confirmed that this proposed location vehicle method is efficient and reliable, and its calculation speed meets the needs of the VRS.
基金Project(60234030)supported by the National Natural Science Foundation of ChinaProject(A1420060159)supported by the BasicResearch Program of the 11th Five-Year-Plan of China
文摘A new scene recognition system was presented based on fuzzy logic and hidden Markov model(HMM)that can be applied in mine rescue robot localization during emergencies.The system uses monocular camera to acquire omni-directional images of the mine environment where the robot locates.By adopting center-surround difference method,the salient local image regions are extracted from the images as natural landmarks.These landmarks are organized by using HMM to represent the scene where the robot is,and fuzzy logic strategy is used to match the scene and landmark.By this way,the localization problem,which is the scene recognition problem in the system,can be converted into the evaluation problem of HMM.The contributions of these skills make the system have the ability to deal with changes in scale,2D rotation and viewpoint.The results of experiments also prove that the system has higher ratio of recognition and localization in both static and dynamic mine environments.
文摘This paper presents a set of algorithms capable of locating main facial features automatically and effectively. Based on integral projection of local binary image pixels and pixel clustering techniques, a set of a priori knowledge based algorithms have succeeded in locating eyes, nose and mouth, and uprighting the tilt face. The proposed approach is superior to other methods as it takes account of photos with glasses and sha dows, therefore suitable for processing real ID type photos.
基金This work was partly supported by National Natural Science Foundation of China(No.61903296)Key Project of Natural Science Basic Research Plan in Shaanxi Province of China(No.2019ZDLGY18-03)+1 种基金Thousand Talents Plan of Shaanxi Province for Young Professionals,Project of Shaanxi Science and Technology(No.2019JQ-329)Doctoral Scientific Research Foundation of Xi’an University of Technology(No.103-451116012).
文摘Accurate sag source location and precise sag type recognition are both essential to verifying the responsible party for the sag and taking countermeasures to improve power quality.In this paper,an attention-based independently recurrent neural network(IndRNN)for sag source location and sag type recognition in sparsely monitored power system is proposed.Specially,the given inputs are voltage waveforms collected by limited meters in sparsely monitored power system,and the desired outputs simultaneously contain the following information:the located lines where sag occurs;the corresponding sag types,including motor starting,transformer energizing and short circuit;and the fault phase for short circuit.In essence,the responsibility of the proposed method is to automatically establish a nonlinear function that relates the given inputs to the desired outputs with categorization labels as few as possible.A favorable feature of the proposed method is that it can be realized without system parameters or models.The proposed method is validated by IEEE 30-bus system and a real 134-bus system.Experimental results demonstrate that the accuracy of sag source location is higher than 99%for all lines,and the accuracy of sag type recognition is also higher than 99%for various sag sources including motor starting,transformer energizing and 7 different types of short circuits.Furthermore,a comparison among different monitor placements for the proposed method is conducted,which illustrates that the observability of power networks should be ensured to achieve satisfactory performance.
基金supported by the National Natural Science Foundation of China(Nos.61473307,61304120)
文摘Drogue recognition and 3D locating is a key problem during the docking phase of the autonomous aerial refueling (AAR). To solve this problem, a novel and effective method based on monocular vision is presented in this paper. Firstly, by employing computer vision with red-ring-shape feature, a drogue detection and recognition algorithm is proposed to guarantee safety and ensure the robustness to the drogue diversity and the changes in environmental condi- tions, without using a set of infrared light emitting diodes (LEDs) on the parachute part of the dro- gue. Secondly, considering camera lens distortion, a monocular vision measurement algorithm for drogue 3D locating is designed to ensure the accuracy and real-time performance of the system, with the drogue attitude provided. Finally, experiments are conducted to demonstrate the effective- ness of the proposed method. Experimental results show the performances of the entire system in contrast with other methods, which validates that the proposed method can recognize and locate the drogue three dimensionally, rapidly and precisely.