期刊文献+
共找到6,108篇文章
< 1 2 250 >
每页显示 20 50 100
Uncertainty quantification of mechanism motion based on coupled mechanism—motor dynamic model for ammunition delivery system
1
作者 Jinsong Tang Linfang Qian +3 位作者 Longmiao Chen Guangsong Chen Mingming Wang Guangzu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期125-133,共9页
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro... In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system. 展开更多
关键词 Ammunition delivery system Electromechanical coupling dynamics Uncertainty quantification Generalized probability density evolution
下载PDF
Ab initio nonadiabatic molecular dynamics study on spin–orbit coupling induced spin dynamics in ferromagnetic metals
2
作者 朱万松 郑镇法 +1 位作者 郑奇靖 赵瑾 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期156-163,共8页
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics... Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems. 展开更多
关键词 nonadiabatic molecular dynamics spin dynamics spin–orbit coupling ferromagnetic metal
下载PDF
Dynamic impact properties of deep sandstone under thermal-hydraulicmechanical coupling loads
3
作者 CAO Chunhui DING Haonan ZOU Baoping 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2113-2129,共17页
The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To... The deep rock mass within coal mines situated in a challenging environment are characterized by high ground stress,high geotemperature,high osmotic water pressure,and dynamic disturbances from mechanical excavation.To investigate the impact of this complex mechanical environment on the dynamic characteristics of roof sandstone in self-formed roadways without coal pillars,standard specimens of deep sandstone from the 2611 upper tunnel working face of the Yongmei Company within the Henan Coal Chemical Industry Group in Henan,China were prepared,and an orthogonal test was designed.Using a self-developed geotechnical dynamic impact mechanics test system,triaxial dynamic impact tests under thermal-hydraulicmechanical coupling conditions were conducted on deep sandstone.The results indicate that under high confining pressure,deep sandstone exhibits pronounced brittle failure at low temperatures,with peak strength gradually decreasing as temperature and osmotic water pressure increase.Conversely,under low confining pressure and low temperature,the brittleness of deep sandstone weakens gradually,while ductility increases.Moreover,sandstone demonstrates higher peak strength at low temperatures under high axial pressure conditions,lower peak strength at high temperatures,and greater strain under low axial pressure and high osmotic water pressure.Increases in impact air pressure and osmotic water pressure have proportionally greater effects on peak stress and peak strain.Approximately 50%of the input strain energy is utilized as effective energy driving the sandstone fracture process.Polar analysis identifies the optimal combination of factors affecting the peak stress and peak strain of sandstone.Under the coupling effect,intergranular and transgranular fractures occur within the sandstone.SEM images illustrate that the damage forms range from minor damage with multiple fissures to extensive fractures and severe fragmentation.This study elucidates the varied dynamic impact mechanical properties of deep sandstones under thermal-hydraulic-mechanical coupling,along with multifactor analysis methods and their optimal factor combinations. 展开更多
关键词 Deep sandstone Thermal-hydraulicmechanical coupling dynamic impact STRESS-STRAIN Failure Modes Polar analysis
下载PDF
Improvement Mechanism of Adhesion Performance of Anti-stripping Agents and Coupling Agents on Asphalt-Aggregate Interface Based on Molecular Dynamics
4
作者 SONG Jing XIE Jianguang DAI Zexinyu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期111-120,共10页
This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various... This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents. 展开更多
关键词 asphalt-aggregate interface adhesion performance anti-stripping agents coupling agents molecular dynamics
下载PDF
An Improved Coupled Dynamic Modelling for Exploring Gearbox Vibrations Considering Local Defects 被引量:1
5
作者 Yaoyao Han Xiaohui Chen +2 位作者 Jiawei Xiao James Xi Gu Minmin Xu 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第4期262-274,共13页
Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring ... Gearbox is a key part in machinery,in which gear,shaft and bearing operate together to transmit motion and power.The wide usage and high failure rate of gearbox make it attract much attention on its health monitoring and fault diagnosis.Dynamic modelling can study the mechanism under different faults and provide theoretical foundation for fault detection.However,current commonly used gear dynamic model usually neglects the influence of bearing and shaft,resulting in incomplete understanding of gearbox fault diagnosis especially under the effect of local defects on gear and shaft.To address this problem,an improved gear-shaft-bearing-housing dynamic model is proposed to reveal the vibration mechanism and responses considering shaft whirling and gear local defects.Firstly,an eighteen degree-of-freedom gearbox dynamic model is proposed,taking into account the interaction among gear,bearing and shaft.Secondly,the dynamic model is iteratively solved.Then,vibration responses are expounded and analysed considering gear spalling and shaft crack.Numerical results show that the gear mesh frequency and its harmonics have higher amplitude through the spectrum.Vibration RMS and the shaft rotating frequency increase with the spalling size and shaft crack angle in general.An experiment is designed to verify the rationality of the proposed gearbox model.Lastly,comprehensive analysis under different spalling size and shaft crack angle are analysed.Results show that when spalling size and crack angle are larger,RMS and the amplitude of shaft rotating frequency will not increase linearly.The dynamic model can accurately simulate the vibration of gear transmission system,which is helpful for gearbox fault diagnosis. 展开更多
关键词 coupled gear-shaft-bearing-housing dynamic mode GEARBOX gearbox fault diagnosis local defects shaft crack
下载PDF
Coupled Dynamics and Integrated Control for Position and Attitude Motions of Spacecraft:A Survey
6
作者 Feng Zhang Guangren Duan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2187-2208,共22页
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o... Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions. 展开更多
关键词 coupled position and attitude dynamic modeling integrated position and attitude control position and attitude coupling analysis SPACECRAFT space missions
下载PDF
Dynamic coupled thermo-hydro-mechanical problem for heterogeneous deep-sea sediments under vibration of mining vehicle
7
作者 Wei ZHU Xingkai MA +1 位作者 Xinyu SHI Wenbo MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期603-622,共20页
Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the ... Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the thermo-hydro-mechanical coupling dynamic response model of heterogeneous saturated porous sediments can be established to study the influence of elastic modulus,density,frequency,and load amplitude changes on the model.Based on the Green-Lindsay generalized thermoelasticity theory and Darcy’s law,the thermo-hydro-mechanical coupled dynamic response model and governing equations of heterogeneous deep-sea sediments with nonlinear elastic modulus and density are established.The analytical solutions of dimensionless vertical displacement,vertical stress,excess pore water pressure,and temperature are obtained by means of normal modal analysis,which are depicted graphically.The results show that the changes of elastic modulus and density have few effects on vertical displacement,vertical stress,and temperature,but have great effects on excess pore water pressure.When the mining machine vibrates,the heterogeneity of deep-sea sediments has great influence on vertical displacement,vertical stress,and excess pore water pressure,but has few effects on temperature.In addition,the vertical displacement,vertical stress,and excess pore water pressure of heterogeneous deep-sea sediments change more gently.The variation trends of physical quantities for heterogeneous and homogeneous deep-sea sediments with frequency and load amplitude are basically the same.The results can provide theoretical guidance for deep-sea mining engineering construction. 展开更多
关键词 heterogeneous deep-sea sediment coupled thermo-hydro-mechanical Green-Lindsay generalized thermoelastic theory normal modal anlalysis dynamic re-sponse
下载PDF
Vibration Reduction by a Partitioned Dynamic Vibration Absorber with Acoustic Black Hole Features 被引量:1
8
作者 Xiaoning Zhao Chaoyan Wang +2 位作者 Hongli Ji Jinhao Qiu Li Cheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期120-134,共15页
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa... Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering. 展开更多
关键词 Acoustic black hole Vibration control dynamic vibration absorber coupling analysis
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
9
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Dynamic thermo-mechanical responses of road-soft ground system under vehicle load and daily temperature variation
10
作者 Chuxuan Tang Jie Liu +3 位作者 Zheng Lu Yang Zhao Jing Zhang Yinuo Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1722-1731,共10页
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav... A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system. 展开更多
关键词 dynamic response Vehicle load Daily temperature variation Thermo-poroelastic medium coupling effects
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
11
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 dynamic behaviors True triaxial compression High strain rates dynamic failure mechanism PFC3D-FLAC3D coupled method
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
12
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Experimental study and numerical simulation of the impact of under-sleeper pads on the dynamic and static mechanical behavior of heavy-haul railway ballast track
13
作者 Yihao Chi Hong Xiao +2 位作者 Yang Wang Zhihai Zhang Mahantesh M.Nadakatti 《Railway Engineering Science》 EI 2024年第3期384-400,共17页
Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static me... Laying the under-sleeper pad(USP)is one of the effective measures commonly used to delay ballast degradation and reduce maintenance workload.To explore the impact of application of the USP on the dynamic and static mechanical behavior of the ballast track in the heavy-haul railway system,numerical simulation models of the ballast bed with USP and without USP are presented in this paper by using the discrete element method(DEM)-multi-flexible body dynamic(MFBD)coupling analysis method.The ballast bed support stiffness test and dynamic displacement tests were carried out on the actual operation of a heavy-haul railway line to verify the validity of the models.The results show that using the USP results in a 43.01%reduction in the ballast bed support stiffness and achieves a more uniform distribution of track loads on the sleepers.It effectively reduces the load borne by the sleeper directly under the wheel load,with a 7.89%reduction in the pressure on the sleeper.Furthermore,the laying of the USP changes the lateral resistance sharing ratio of the ballast bed,significantly reducing the stress level of the ballast bed under train loads,with an average stress reduction of 42.19 kPa.It also reduces the plastic displacement of ballast particles and lowers the peak value of rotational angular velocity by about 50%to 70%,which is conducive to slowing down ballast bed settlement deformation and reducing maintenance costs.In summary,laying the USP has a potential value in enhancing the stability and extending the lifespan of the ballast bed in heavy-haul railway systems. 展开更多
关键词 Heavy-haul railway Under-sleeper pad Discrete element method Multi-flexible body dynamic coupling analysis Mechanical behavior Quality state
下载PDF
Multi-Body Dynamics Modeling of Heavy Goods Vehicle-Rail Interaction
14
作者 Lili Liu Jianhua Liu Jihong Zuo 《Open Journal of Applied Sciences》 2024年第7期1715-1722,共8页
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes... Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling. 展开更多
关键词 Vehicle-Rail coupling dynamic Modeling Wheel-Rail Interaction Forces
下载PDF
Dynamic Response of Sea-Crossing Rail-cum-Road Cable-Stayed Bridge Influenced by Random Wind–Wave–Undercurrent Coupling
15
作者 BIAN Chen-jie DU Li-ming +2 位作者 WANG Ga-ping LI Xin LI Wei-ran 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期85-100,共16页
Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe u... Sea-crossing bridges are affected by random wind–wave–undercurrent coupling loads, due to the complex marine environment. The dynamic response of long-span Rail-cum-Road cable-stayed bridges is particularly severe under their influence, potentially leading to safety problems. In this paper, a fluid–structure separation solution method is implemented using Ansys–Midas co-simulation, in order to solve the above issues effectively while using less computational resources. The feasibility of the method is verified by comparing the tower top displacement response with relevant experimental data. From time and frequency domain perspectives, the displacement and acceleration responses of the sea-crossing Rail-cum-Road cable-stayed bridge influenced by wave-only, wind–wave, and wind–wave–undercurrent coupling are comparatively studied. The results indicate that the displacement and acceleration of the front bearing platform top are more significant than those of the rear bearing platform. The dominant frequency under wind–wave–undercurrent coupling is close to the natural vibration frequencies of several bridge modes,such that wind–wave–undercurrent coupling is more likely to cause a resonance effect in the bridge. Compared with the wave-only and wind–wave coupling, wind–wave–undercurrent coupling can excite bridges to produce larger displacement and acceleration responses: at the middle of the main girder span, compared with the wave-only case, the maximum displacement in the transverse bridge direction increases by 23.58% and 46.95% in the wind–wave and wind–wave–undercurrent coupling cases, respectively;at the tower top, the variation in the amplitude of the displacement and acceleration responses of wind–wave and wind–wave–undercurrent coupling are larger than those in the wave-only case, where the acceleration change amplitude of the tower top is from-0.93 to 0.86 m/s^(2) in the waveonly case, from-2.2 to 2.1 m/s^(2) under wind–wave coupling effect, and from-2.6 to 2.65 m/s^(2) under wind–wave–undercurrent coupling effect, indicating that the tower top is mainly affected by wind loads, but wave and undercurrent loads cannot be neglected. 展开更多
关键词 random wind WAVE undercurrent coupling effect Rail-cum-Road cable-stayed bridge dynamic response
下载PDF
A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load 被引量:9
16
作者 Lihai Tan Ting Ren +1 位作者 Xiaohan Yang Xueqiu He 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期791-797,共7页
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ... To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure. 展开更多
关键词 Static–dynamic coupled loads SHPB COAL BEDDING angle Strain energy PFC2D
下载PDF
Mechanical properties of rock under coupled static-dynamic loads 被引量:10
17
作者 Xibing Li Zilong Zhou +4 位作者 Fujun Zhao Yujun Zuo Chunde Ma Zhouyuan Ye Liang Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期41-47,共7页
Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting... Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads. 展开更多
关键词 rock dynamic testing system coupled static-dynamic loads STRENGTH FRAGMENTATION energy absorption
下载PDF
Coupled Dynamic Response Analysis of A Multi-Column Tension-Leg-Type Floating Wind Turbine 被引量:7
18
作者 赵永生 杨建民 +1 位作者 何炎平 顾敏童 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期505-520,共16页
This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only lo... This paper presents a coupled dynamic response analysis of a multi-column tension-leg-type floating wind turbine(Wind Star TLP system) under normal operation and parked conditions. Wind-only load cases, wave-only load cases and combined wind and wave load cases were analyzed separately for the Wind Star TLP system to identify the dominant excitation loads. Comparisons between an NREL offshore 5-MW baseline wind turbine installed on land and the Wind Star TLP system were performed. Statistics of selected response variables in specified design load cases(DLCs) were obtained and analyzed. It is found that the proposed Wind Star TLP system has small dynamic responses to environmental loads and it thus has almost the same mean generator power output under operating conditions as the land-based system. The tension mooring system has a sufficient safety factor, and the minimum tendon tension is always positive in all selected DLCs. The ratio of ultimate load of the tower base fore-aft bending moment for the Wind Star TLP system versus the land-based system can be as high as 1.9 in all of the DLCs considered. These results will help elucidate the dynamic characteristics of the proposed Wind Star TLP system, identify the difference in load effect between it and land-based systems, and thus make relevant modifications to the initial design for the Wind Star TLP system. 展开更多
关键词 floating wind turbine windStar TLP coupled dynamic response operating andparked condition
下载PDF
Dynamic Coupled Analysis of the Floating Platform Using the Asynchronous Coupling Algorithm 被引量:5
19
作者 Shan Ma Wenyang Duan 《Journal of Marine Science and Application》 2014年第1期85-91,共7页
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficienc... This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated. 展开更多
关键词 floating PLATFORM PLATFORM MOTIONS dynamic coupledanalysis ASYNCHRONOUS coupling algorithm MOORING line TENSIONS SPAR PLATFORM
下载PDF
Dynamic tensile behaviour and crack propagation of coal under coupled static-dynamic loading 被引量:20
20
作者 Xianjie Hao Weisheng Du +4 位作者 Yixin Zhao Zhuowen Sun Qian Zhang Shaohua Wang Haiqing Qiao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期659-668,共10页
The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading test... The fracture behaviour and crack propagation features of coal under coupled static-dynamic loading conditions are important when evaluating the dynamic failure of coal.In this study,coupled static-dynamic loading tests are conducted on Brazilian disc(BD)coal specimens using a modified split Hopkinson pressure bar(SHPB).The effects of the static axial pre-stress and loading rate on the dynamic tensile strength and crack propagation characteristics of BD coal specimens are studied.The average dynamic indirect tensile strength of coal specimens increases first and then decreases with the static axial pre-stress increasing.When no static axial pre-stress is applied,or the static axial pre-stress is 30%of the static tensile strength,the dynamic indirect tensile strength of coal specimens shows an increase trend as the loading rate increases.When the static axial pre-stress is 60%of the static tensile strength,the dynamic indirect tensile strength shows a fluctuant trend as the loading rate increases.According to the crack propagation process of coal specimens recorded by high-speed camera,the impact velocity influences the mode of crack propagation,while the static axial pre-stress influences the direction of crack propagation.The failure of coal specimens is a coupled tensile-shear failure under high impact velocity.When there is no static axial pre-stress,tensile cracks occur in the vertical loading direction.When the static axial pre-stress is applied,the number of cracks perpendicular to the loading direction decreases,and more cracks occur in the parallel loading direction. 展开更多
关键词 COAL coupled static-dynamic loading SHPB dynamic fracture behaviour Crack propagation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部