In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics...Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.展开更多
This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various...This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.展开更多
Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gu...Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.展开更多
With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring syst...With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.展开更多
This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geo...This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.展开更多
Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul...Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul vehicle on the elastic track is developed. Secondly, the reason of the hunting motion is analyzed, and a bifurcation diagram for the vehicle on the curved track is put forward to simulate the nonlinear critical speed. Results show that the hunting motion of the heavy-haul vehicle will appear due to the larger conicity, the initial lateral shift and the wheelset angle of attack. With the hunting motion appearing, the lateral shift and force of the wheelset are changed sharply and periodically with a wave of circa 3.6 m. There is obvious difference in the bifurcation diagram between on a curved track and on a tangent track. Relative to the centerline of the track, each vehicle body on the curved track has two stable cycles. As for the curved track with a radius of 600 m and a superelevation of 55 mm, the nonlinear critical speed of the heavy-haul vehicle is 76.4 km/h.展开更多
Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral ...Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral excitation is obtained by the variational principle and solved with a modal analysis method. The variational formulas are transformed into a frequency equation in the form of a standard eigenvalue problem by the Galerkin method, in which admissible functions for the velocity potential and the liquid flee surface displacement are determined analytically in terms of the Gaussian hypergeometric series. The coupled dynamic equations of the liquid-filled container are derived using the Lagrange's method and are numerically solved. The time histories of the modal solutions are obtained in numerical simulations.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
A novel approach to the inverse problem of diffusively coupled map lattices is systematically investigated by utilizing the symbolic vector dynamics. The relationship between the performance of initial condition estim...A novel approach to the inverse problem of diffusively coupled map lattices is systematically investigated by utilizing the symbolic vector dynamics. The relationship between the performance of initial condition estimation and the structural feature of dynamical system is proved theoretically. It is found that any point in a spatiotemporal coupled system is not necessary to converge to its initial value with respect to sufficient backward iteration, which is directly relevant to the coupling strength and local mapping function. When the convergence is met, the error bound in estimating the initial condition is proposed in a noiseless environment, which is determined by the dimension of attractors and metric entropy of the system. Simulation results further confirm the theoretic analysis, and prove that the presented method provides the important theory and experimental results for better analysing and characterizing the spatiotemporal complex behaviours in an actual system.展开更多
Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping ...Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to- noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors usiug symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.展开更多
A novel computationally efficient algorithm in terms of the time-varying symbolic dynamic method is proposed to estimate the unknown initial conditions of coupled map lattices (CMLs). The presented method combines s...A novel computationally efficient algorithm in terms of the time-varying symbolic dynamic method is proposed to estimate the unknown initial conditions of coupled map lattices (CMLs). The presented method combines symbolic dynamics with time-varying control parameters to develop a time-varying scheme for estimating the initial condition of multi-dimensional spatiotemporal chaotic signals. The performances of the presented time-varying estimator in both noiseless and noisy environments are analysed and compared with the common time-invariant estimator. Simulations are carried out and the obtained results show that the proposed method provides an efficient estimation of the initial condition of each lattice in the coupled system. The algorithm cannot yield an asymptotically unbiased estimation due to the effect of the coupling term, but the estimation with the time-varying algorithm is closer to the Cramer-Rao lower bound (CRLB) than that with the time-invariant estimation method, especially at high signal-to-noise ratios (SNRs).展开更多
Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entangl...Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.展开更多
For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element m...For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.展开更多
Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are inv...Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values(1.31,2.34,and 7.17 nm)and strain rates(1.0×10^(8)s^(-1)≤ε≤5.0×10^(10)s^(-1)).The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate.Four distinct strain rate regions in the tensile process can be discovered,which are small,intermediate,critical,and large strain rate regions.As the strain rate increases,the initial plastic behaviors transform from interface shear(the shortest sample)and grain reorientation(the longest sample)in small strain rate region to amorphization of crystalline structures(all samples)in large strain rate region.Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region,and only related to collapse of crystalline atoms in high strain rate region.A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires.The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs,but barely affect the plastic deformation mechanisms of the materials.The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs.展开更多
This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important ...This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important form of mechanical system. It mostly used to stabilize the potential shaping of dynamical system. Free surface movement of liquid inside the container is called sloshing. If there is uncontrolled resonance between the motion of tank and liquid-frequency inside the tank then such sloshing can be a reason of attitude disturbance or structural damage of spacecraft. Equivalent mechanical model of simple pendulum or mass attached with spring for sloshing is used by many researchers. Mass attached with spring is used as an equivalent model of sloshing to derive the mathematical equations in terms of Hamiltonian model. Analytical method of Lyapunov function with Casimir energy function is used to find the stability for spacecraft dynamics. Vertical axial rotation is taken as the major axial steady rotation for the moving rigid body.展开更多
Unstable attractors are a novel type of attractor with local unstable dynamics, but with positive measures of basins.Here, we introduce local contracting dynamics by slightly modifying the function which mediates the ...Unstable attractors are a novel type of attractor with local unstable dynamics, but with positive measures of basins.Here, we introduce local contracting dynamics by slightly modifying the function which mediates the interactions among the oscillators. Thus, the property of unstable attractors can be controlled through the cooperation of expanding and contracting dynamics. We demonstrate that one certain type of unstable attractor is successfully controlled through this simple modification. Specifically, the staying time for unstable attractors can be prolonged, and we can even turn the unstable attractors into stable attractors with predictable basin sizes. As an application, we demonstrate how to realize the switching dynamics that is only sensitive to the finite size perturbations.展开更多
The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carr...The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.展开更多
Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In...Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In order to quickly acquire the FRF of the different components combinations of machine tool,the assembly of machine tool was always decomposed into several parts,where the fluted portion of tool,however,was always treated as a uniform beam,and the associated discrepancy was ignored.This paper presents a new method to predict the dynamic response of the machine-spindle-holder-tool assembly using the receptance coupling substructure analysis technique,where the assembly is divided into three parts:machine-spindle,holder and tool shank,and tool's fluted portion.Impact testing is used to measure the receptance of machine-spindle,the Timoshenko beam model is employed to analyze the dynamics of holder and tool shank,and the finite element method(FEM) is used to calculate the receptance of the tool's fluted portion.The approximation of the fluted portion cross section using an equivalent diameter is also addressed.All the individual receptances are coupled by using substructure method.The predicted assembly receptance is experimentally verified for three different tool overhang lengths.The results also show that the equivalent diameter beam model reaches an acceptable accuracy.The proposed approach is helpful to predict the tool point dynamics rapidly in industry.展开更多
To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles ...To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
基金support of Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450101)the National Natural Science Foundation of China(Grant Nos.12125408 and 11974322)+1 种基金the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0105)the support of the National Natural Science Foundation of China(Grant No.12174363)。
文摘Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
文摘This study examined the mechanisms for improving the adhesion performance of the asphalt-aggregate interface with two anti-stripping agents and two coupling agents.The investigation of contact behavior between various asphalt-aggregate surfaces was conducted using molecular dynamics(MD)simulations.The interaction energy and the relative concentration distribution were employed as the parameters to analyze the enhancement mechanisms of anti-stripping agents and coupling agents on the asphalt-aggregate interface.Results indicated that the adhesion at the asphalt-aggregate interface could be strengthened by both anti-stripping agents and coupling agents.Anti-stripping agents primarily improve adhesion through the reinforcement of electrostatic attraction,while coupling agents primarily upgrade adhesion by strengthening the van der Waals.Hence,the molecular dynamics modeling and calculation techniques presented in this study can be utilized to elucidate the development mechanism of the asphalt-aggregate interface through the use of anti-stripping agents and coupling agents.
文摘Accurate prediction of the offshore structure motion response and associate mooring line tension is important in both technical applications and scientific research. In our study, a truss spar platform, operated in Gulf of Mexico, is numerically simulated and analyzed by an in-house numerical code 'COUPLE'. Both the platform motion responses and associated mooring line tension are calculated and investigated through a time domain nonlinear coupled dynamic analysis. Satisfactory agreement between the simulation and corresponding field measurements is in general reached, indicating that the numerical code can be used to conduct the time-domain analysis of a truss spar interacting with its mooting and riser system. Based on the comparison between linear and nonlinear results, the relative importance of nonlinearity in predicting the platform motion response and mooring line tensions is assessed and presented. Through the coupled and quasi-static analysis, the importance of the dynamic coupling effect between the platform hull and the mooting/riser system in predicting the mooting line tension and platform motions is quantified. These results may provide essential information pertaining to facilitate the numerical simulation and design of the large scale offshore structures.
基金financially supported by the National Natural Science Foundation of China(Grant No.51379095)
文摘With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria.
基金supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 51735012 and 11790283
文摘This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.
文摘Being viewed from the standpoint of whole system, the hunting stability of a heavy-haul railway vehicle on a curved track is investigated in this paper. First, a model to simulate dynamic performance of the heavy-haul vehicle on the elastic track is developed. Secondly, the reason of the hunting motion is analyzed, and a bifurcation diagram for the vehicle on the curved track is put forward to simulate the nonlinear critical speed. Results show that the hunting motion of the heavy-haul vehicle will appear due to the larger conicity, the initial lateral shift and the wheelset angle of attack. With the hunting motion appearing, the lateral shift and force of the wheelset are changed sharply and periodically with a wave of circa 3.6 m. There is obvious difference in the bifurcation diagram between on a curved track and on a tangent track. Relative to the centerline of the track, each vehicle body on the curved track has two stable cycles. As for the curved track with a radius of 600 m and a superelevation of 55 mm, the nonlinear critical speed of the heavy-haul vehicle is 76.4 km/h.
基金the National Natural Science Foundation of China(Nos.10572022,10772026)
文摘Nonlinear coupled dynamics of a liquid-filled spherical container in microgravity are investigated. The governing equations of the low-gravity liquid sloshing in a convex axisymmetrical container subjected to lateral excitation is obtained by the variational principle and solved with a modal analysis method. The variational formulas are transformed into a frequency equation in the form of a standard eigenvalue problem by the Galerkin method, in which admissible functions for the velocity potential and the liquid flee surface displacement are determined analytically in terms of the Gaussian hypergeometric series. The coupled dynamic equations of the liquid-filled container are derived using the Lagrange's method and are numerically solved. The time histories of the modal solutions are obtained in numerical simulations.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60571066,60271023 and 61072037)the Natural Science Foundation of Guangdong Province,China (Grant No. 07008126)
文摘A novel approach to the inverse problem of diffusively coupled map lattices is systematically investigated by utilizing the symbolic vector dynamics. The relationship between the performance of initial condition estimation and the structural feature of dynamical system is proved theoretically. It is found that any point in a spatiotemporal coupled system is not necessary to converge to its initial value with respect to sufficient backward iteration, which is directly relevant to the coupling strength and local mapping function. When the convergence is met, the error bound in estimating the initial condition is proposed in a noiseless environment, which is determined by the dimension of attractors and metric entropy of the system. Simulation results further confirm the theoretic analysis, and prove that the presented method provides the important theory and experimental results for better analysing and characterizing the spatiotemporal complex behaviours in an actual system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61072037 and 60271023)the Natural Science Foundation of Guangdong Province,China (Grant No. 10151503101000011)
文摘Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to- noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors usiug symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.
基金supported by the National Natural Science Foundation of China(Grant Nos 60271023 and 60571066)the Natural Science Foundation of Guangdong Province,China(Grant Nos 5008317 and 7118382)
文摘A novel computationally efficient algorithm in terms of the time-varying symbolic dynamic method is proposed to estimate the unknown initial conditions of coupled map lattices (CMLs). The presented method combines symbolic dynamics with time-varying control parameters to develop a time-varying scheme for estimating the initial condition of multi-dimensional spatiotemporal chaotic signals. The performances of the presented time-varying estimator in both noiseless and noisy environments are analysed and compared with the common time-invariant estimator. Simulations are carried out and the obtained results show that the proposed method provides an efficient estimation of the initial condition of each lattice in the coupled system. The algorithm cannot yield an asymptotically unbiased estimation due to the effect of the coupling term, but the estimation with the time-varying algorithm is closer to the Cramer-Rao lower bound (CRLB) than that with the time-invariant estimation method, especially at high signal-to-noise ratios (SNRs).
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174254 and 11474256
文摘Dynamics of quantum entanglement of two qubits in two identical quantum Rabi models is studied analytically in the framework of corrections to the rotating-wave approximations. A closed-form expression for the entanglement dynamics initiated from the well-known Bell states is derived, which is very close to the numerical exact results up to the ultrastrong coupling regime. It is found that the vanishing entanglement can be purely induced by the counter-rotating terms, and can be enhanced with the atom-cavity coupling.
文摘For establishing the refined numerical simulation model for coupled vibration between vehicle and bridge, the refined three-dimensional vehicle model is setup by multi-body system dynamics method, and finite element method of dynamic model is adopted to model the bridge. Taking Yujiang River Bridge on Nanning-Guangzhou railway line in China as study background, the?refined numerical simulation model of whole vehicle and whole bridge system for coupled vibration analysis is set up. The dynamic analysis model of the cable-stayed bridge is established by finite element method, and the natural vibration properties of the bridge are analyzed. The German ICE Electric Multiple Unit (EMU) train refined three-dimensional space vehicle model is set up by multi-system dynamics software SIMPACK, and the multiple non-linear properties are considered. The space vibration responses are calculated by co-simulation based on multi-body system dynamics and finite element method when the ICE EMU train passes the long span cable-stayed bridge at different speeds. In order to test if the bridge has the sufficient lateral or vertical rigidity and the operation stability is fine. The calculation results show: The operation safety can be guaranteed, and comfort?index is “excellent”. The bridge has sufficient rigidity, and vibration is in good condition.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572259)the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-827)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.19JK0672).
文摘Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values(1.31,2.34,and 7.17 nm)and strain rates(1.0×10^(8)s^(-1)≤ε≤5.0×10^(10)s^(-1)).The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate.Four distinct strain rate regions in the tensile process can be discovered,which are small,intermediate,critical,and large strain rate regions.As the strain rate increases,the initial plastic behaviors transform from interface shear(the shortest sample)and grain reorientation(the longest sample)in small strain rate region to amorphization of crystalline structures(all samples)in large strain rate region.Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region,and only related to collapse of crystalline atoms in high strain rate region.A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires.The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs,but barely affect the plastic deformation mechanisms of the materials.The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs.
基金supported by Higher Education Commis- sion of Pakistan,National Natural Science Foundation of China(11072030)Ph.D.Programs Foundation of Ministry of Education of China(20080070011)+1 种基金Scientific Research Foundation of Ministry of Education of China for Returned Scholars(20080732040)Program of Beijing Municipal Key Discipline Construction
文摘This paper presents a canonical Hamiltonian model of liquid sloshing for the container coupled with spacecraft. Elliptical shape of rigid body is considered as spacecraft structure. Hamiltonian system is an important form of mechanical system. It mostly used to stabilize the potential shaping of dynamical system. Free surface movement of liquid inside the container is called sloshing. If there is uncontrolled resonance between the motion of tank and liquid-frequency inside the tank then such sloshing can be a reason of attitude disturbance or structural damage of spacecraft. Equivalent mechanical model of simple pendulum or mass attached with spring for sloshing is used by many researchers. Mass attached with spring is used as an equivalent model of sloshing to derive the mathematical equations in terms of Hamiltonian model. Analytical method of Lyapunov function with Casimir energy function is used to find the stability for spacecraft dynamics. Vertical axial rotation is taken as the major axial steady rotation for the moving rigid body.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11502200 and 91648101)the Fundamental Research Funds for the Central Universities,China(Grant No.3102018zy012)
文摘Unstable attractors are a novel type of attractor with local unstable dynamics, but with positive measures of basins.Here, we introduce local contracting dynamics by slightly modifying the function which mediates the interactions among the oscillators. Thus, the property of unstable attractors can be controlled through the cooperation of expanding and contracting dynamics. We demonstrate that one certain type of unstable attractor is successfully controlled through this simple modification. Specifically, the staying time for unstable attractors can be prolonged, and we can even turn the unstable attractors into stable attractors with predictable basin sizes. As an application, we demonstrate how to realize the switching dynamics that is only sensitive to the finite size perturbations.
基金National Natural Science Foundation of China(60475039)
文摘The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.
基金supported by National Basic Research Program of China (973 Program,Grant No. 2009CB724407)National Natural Science Foundation of China (Grant No. 51005175)Chinese Scholarship Council (University of Florida)
文摘Chatter has been a primary obstacle to the successful implementation of high speed machining.The frequency response function(FRF) of the tool point is crucial for identification of chatter free cutting conditions.In order to quickly acquire the FRF of the different components combinations of machine tool,the assembly of machine tool was always decomposed into several parts,where the fluted portion of tool,however,was always treated as a uniform beam,and the associated discrepancy was ignored.This paper presents a new method to predict the dynamic response of the machine-spindle-holder-tool assembly using the receptance coupling substructure analysis technique,where the assembly is divided into three parts:machine-spindle,holder and tool shank,and tool's fluted portion.Impact testing is used to measure the receptance of machine-spindle,the Timoshenko beam model is employed to analyze the dynamics of holder and tool shank,and the finite element method(FEM) is used to calculate the receptance of the tool's fluted portion.The approximation of the fluted portion cross section using an equivalent diameter is also addressed.All the individual receptances are coupled by using substructure method.The predicted assembly receptance is experimentally verified for three different tool overhang lengths.The results also show that the equivalent diameter beam model reaches an acceptable accuracy.The proposed approach is helpful to predict the tool point dynamics rapidly in industry.
基金the Chinese Scholarship Council (No. 201706370022) for the financial support to the joint Ph.D. programme at the University of Wollongong,Australia
文摘To investigate the bedding influence on coal mechanical behaviour in underground environments such as coal or rock burst, simulations of dynamic SHPB tests of pre-stressed coal specimens with different bedding angles were carried out using a particle flow code 2-dimensional(PFC2D). Three impact velocities of 4, 8 and 12 m/s were selected to study dynamic behaviours of coal containing bedding planes under different dynamic loads. The simulation results showed that the existence of bedding planes leads to the degradation of the mechanical properties and their weakening effect significantly depends on the angle h between the bedding planes and load direction. With h increaseing from 0° to 90°, the strength first decreased and subsequently increased and specimens became most vulnerable when h was 30° or 45°.Five failure modes were observed in the specimens in the context of macro-cracks. Furthermore, energy characteristics combined with ultimate failure patterns revealed that maximum accumulated energy and failure intensity have a positive relation with the strength of specimen. When bedding planes were parallel or perpendicular to loading direction, specimens absorbed more energy and experienced more violent failure with increased number of cracks. In contrast, bedding planes with h of 30° or 45° reduced the specimens' ability of storing strain energy to the lowest with fewer cracks observed after failure.