While Unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies,the concentrations of hy...While Unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies,the concentrations of hydrocarbons (HC) and earbon monoxides (CO) in emissions were analyzed on Santana engine Dynamometer under a standard test cycle, and total exhaust particles were collected from engines using leaded and unleaded gasoline. It was found that unleaded gasoline reduced the emissions of CO and HC, and decreased the quantity of vehicle exhaust particulate matters by 60%.With the unlead gasoline, only 23 kinds of organic substances, adsorbed in the particles, were identified by gas chromatography/mass spectrometer (GC/MS) while 32 components were detected using the leaded gasoline. The results of in vitro Salmonella/ microsomal test and micronucleus induction assay in CHL cells indicated that both types of gasoline increased the number of histidine-independent colonies and the frequencies of micronucleus induction; no significant differellce was found in their mutagenicity.展开更多
Rather than parking at nearby hourly parking lots, many passenger-picking-up vehicles prefer to idle at terminals and/or drive cycling around terminal facilities. As a result, extra vehicle emissions may be produced i...Rather than parking at nearby hourly parking lots, many passenger-picking-up vehicles prefer to idle at terminals and/or drive cycling around terminal facilities. As a result, extra vehicle emissions may be produced in an airport area. Even though there are limited studies on such emissions at airports, these estimations were normally based on the date emission models, which might cause bias in emission estimations. This paper proposes an approach to employ the floating car method and Global Positioning System (GPS) to record speeds and acceleration rates of idling and cycling vehicles at airport terminals. The tests were conducted under different time periods and traffic demands with different waiting time. The speeds and acceleration rates are synthesized to yield Vehicle Specific Power's (VSP) and Operational Mode (OM) distributions. Utilizing the Environmental Protection Agency (EPA) emission estimation model Motor Vehicle Emission Simulator (MOVES), pollutants and green house gas emission indexes (e.g. NOx, CO, CO2 and HC) and fuel consumptions can be easily estimated. As an illustration of the proposed approach, the research team collected GPS data at a terminal in Houston William Hobby Airport (HOU), and calculated the VSP distributions and OM distributions. Emissions of passenger-picking-up vehicles around these congested airport terminals.展开更多
This paper aimed to investigate the correlation between carbon emissions,fuel consumption,and speed limit.A theoretical model was derived based on the energy conservation law,which expresses the relationship between v...This paper aimed to investigate the correlation between carbon emissions,fuel consumption,and speed limit.A theoretical model was derived based on the energy conservation law,which expresses the relationship between vehicle's fuel consumption and speed.Subsequently,a total of 40 sets of fuel consumption data were collected through field tests to verify the accuracy of the theoretical model at different speeds and different road longitudinal slope combinations.The fuel consumption was then converted to carbon emissions according to the carbon emission factors specified by Intergovernmental Panel on Climate Change(IPCC).In the field experiment,two types of cars and trucks,which are most common on the expressways in China,were selected.Finally,the travel speed under different posted speed limits was obtained through the previously established model,and the carbon emission changes of different vehicle types at different limited speeds are calculated.The results show that the speed limit has a significant impact on fuel consumption and carbon emissions.When the speed limit increased from 80 to 120 km/h,average vehicle speeds increased about 21%-27%,and fuel consumption and carbon emissions increased from approximately 33%-38%.Another interesting result was that the vehicle's fuel consumption and carbon emissions are only affected by speed.The results of the study explore the effect of speed limits on carbon emissions and provide evidence for road managers to set reasonable speed limits.展开更多
The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above curr...The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above current air quality standard. In this work we studied exhaust and evaporative emissions of Mexico City metropolitan area (MAMC) vehicles using fuels in which sulfur content was varied from 89×10^-6 to 817×10^-6, and calculated the ozone forming potential of emissions as well as the specific reactivity of the exhaust for each average fleet-fuel combinations. Data on emission levels were compared to those obtained in 2000 for the same vintage of vehicles. The almost twofold increase in emissions found could be due to degradation of the exhaust emissions control systems.展开更多
Vehicle emission has been the major source of air pollution in urban areas in the past two decades. This article proposes an artificial neural network model for identifying the taxi gross emitters based on the remote ...Vehicle emission has been the major source of air pollution in urban areas in the past two decades. This article proposes an artificial neural network model for identifying the taxi gross emitters based on the remote sensing data. After carrying out the field test in Guangzhou and analyzing various factors from the emission data, the artificial neural network modeling was proved to be an advisable method of identifying the gross emitters. On the basis of the principal component analysis and the selection of algorithm and architecture, the Back-Propagation neural network model with 8-17-1 architecture was established as the optimal approach for this purpose. It gave a percentage of hits of 93%. Our previous research result and the result from aggression analysis were compared, and they provided respectively the percentage of hits of 81.63% and 75%. This comparison demonstrates the potentiality and validity of the proposed method in the identification of taxi gross emitters.展开更多
The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the ...The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.展开更多
Vehicle emissions are a major source of air pollution in urban areas. The impact on urban air quality could be reduced if the trends of vehicle emissions are well understood. In the present study, the real-world emiss...Vehicle emissions are a major source of air pollution in urban areas. The impact on urban air quality could be reduced if the trends of vehicle emissions are well understood. In the present study, the real-world emissions of vehicles were measured using a remote sensing system at five sites in Hangzhou, China from February 2004 to August 2005. More than 48000 valid gasoline powered vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured. The results show that petrol vehicle fleet in Hangzhou has considerably high CO emissions, with the average emission concentration of 2.71 %±0.02%, while HC and NO emissions are relatively lower, with the average emission concentration of (153.72±1.16)×10-6 and (233.53±1.80)×10-6, respectively. Quintile analysis of both average emission concentration and total amount emissions by model year suggests that in-use emission differences between well maintained and badly maintained vehicles are larger than the age-dependent deterioration of emissions. In addition, relatively new high polluting vehicles are the greatest contributors to fleet emissions with, for example, 46.55% of carbon monoxide fleet emissions being produced by the top quintile high emitting vehicles from model years 2000-2004. Therefore, fleet emissions could be significantly reduced if new highly polluting vehicles were subject to effective emissions testing followed by appropriate remedial action.展开更多
As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A fie...As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.展开更多
Biodiesel is one of the most popular prospective alternative fuels and can be obtained from a variety of sources. Waste frying oil is one such source along with the various raw vegetable oils. However, some specific t...Biodiesel is one of the most popular prospective alternative fuels and can be obtained from a variety of sources. Waste frying oil is one such source along with the various raw vegetable oils. However, some specific technical treatments are required to improve certain fuel properties such as viscosity and calorific value of the biodiesel being obtained from waste cooking oil methyl ester (WCOME). Various treatments are applied depending on the source and therefore the composition of the cooking oil. This research investigated the performance of WCOME as an alternative biofuel in a four-stroke direct injection diesel engine. An 8-mode test was undertaken with diesel fuel and five WCOME blends. The best compromise blend in terms of performance and emissions was identified. Results showed that energy utilization factors of the blends were similar within the range of the operational parameters (speed, load and WCOME content). Increasing biodiesel content produced slightly more smoke and NOx for a great majority of test points, while the CO and THC emissions were lower.展开更多
As a megacity with thriving economy, Shanghai is experiencing rapid motorisation and confronted with traffic congestion problems despite its low car ownership. It is of value to look into the policies on emission cont...As a megacity with thriving economy, Shanghai is experiencing rapid motorisation and confronted with traffic congestion problems despite its low car ownership. It is of value to look into the policies on emission control of motor vehicle and congestion reduction in such a city to explore how to reconcile mobility enhancement with the environment. Results of a dynamic simulation displayed time paths of emissions from motor vehicles in Shanghai over the period from 2000 to 2020. The simulation results showed that early policies on emission control of motor vehicle could bring about far-reaching effects on emission reduc- tion, and take advantage of available low-polluting technologies and technical innovation over time. Travel demand management would play an important role in curbing congestion and reducing motor vehicle pollution by calming down car ownership rise and deterring inefficient trips as well as reducing fuel waste caused by congestion.展开更多
The projection pursuit model is used to study the assessment of air pollution caused by vehicle emissions at intersections. Based on the analysis of the characteristics and regularities of vehicle emissions at interse...The projection pursuit model is used to study the assessment of air pollution caused by vehicle emissions at intersections. Based on the analysis of the characteristics and regularities of vehicle emissions at intersections, a vehicle emission model based on projection pursuit is established, and the bat algorithm is used to solve the optimization function. The research results show that the projection pursuit model can not only measure the air pollution of vehicle emissions at intersections, but also effectively evaluate the level of vehicle exhaust emissions at intersections. Taking the air pollution caused by vehicle emissions at intersections as the research object and considering the influence factors of vehicle emissions on air pollution comprehensively, the evaluation index system of vehicle emissions at intersections on air pollution is constructed. Based on large data analysis, a prediction model of air pollution caused by vehicle emissions at intersections is constructed, and an improved bat algorithm is used to realize the assessment process. The application results show that the prediction model of vehicle emissions at intersections can define the degree of air pollution caused by vehicle emissions, and it has good guiding significance and practical value for solving the problem of air pollution caused by vehicle emissions.展开更多
The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic conver...The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.展开更多
To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, f...To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, field tests are conducted in Changchun Street of Changchun city and vehicle emission factors in complete stop and uniform speed states are collected. Queue lengths and signal light colors of approach lanes are selected as state variables, and green switch plans are selected as decision variables of the system. Then the calculation model of the optimization index during the planning horizon is developed based on the basis function method of the ADP. The temporal-difference algorithm is employed to update the weighting factor vector of the approximate function. Simulations are conducted in Matlab and the results show that the established algorithm outperforms the conventional coordination algorithm in reducing vehicle emissions by 8.2%. Sensitive analysis of the planning horizon length on the evaluation index is also conducted and the statistical results show that the optimal length of the planning horizon is directly proportional to the traffic load.展开更多
A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hy...A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.展开更多
Vehicle evaporation is an essential source of VOCs in cities but is not well understood in China.Reported emission factors from previous studies are not enough for understanding the atmospheric chemical process of veh...Vehicle evaporation is an essential source of VOCs in cities but is not well understood in China.Reported emission factors from previous studies are not enough for understanding the atmospheric chemical process of vehicular evaporative VOCs.In this work,a serious of detailed VOCs speciation profiles are developed based on test processes and emission processes.A mass balance method was used to divide different emission processes during diurnal tests.The results show that headspace vapor of gasoline cannot represent the real-world vehicle evaporation because of the significant differences in VOCs speciation profiles,especially for aromatics.To further distinguish emissions from evaporation and exhaust,only the ratios of MTBE/benzene and MTBE/toluene can serve as indicators when considering species from all evaporative processes.Besides,emissions from different sources change significantly with the seasons.To solve these problems,we developed a monthly comprehensive evaporation speciation profile.The individual profiles at the emission processes are weighted by the emission of the in-use vehicle fleet in Beijing to derive the comprehensive speciation profile of evaporative VOCs.Ozone formation potential(OFP)and secondary organic aerosol potential(SOAP)were used to evaluate the environmental impact.For SOAP,100 g evaporative emissions are equal to 6.05-12.71 g toluene in different months,much higher than that given using headspace vapors,especially in winter(7.2 times higher in December).These findings would improve our understanding of the evaporative VOCs emissions in China and their environmental impacts(e.g.,O3 and SOA formation).展开更多
With the increasing international consensus concerning the negative effects of climate change,reducing greenhouse gases has become a higher priority in government policies and research committees.The transportation se...With the increasing international consensus concerning the negative effects of climate change,reducing greenhouse gases has become a higher priority in government policies and research committees.The transportation sector generates approximately 29%of the total greenhouse gas emissions and 25%of the global energy related carbon dioxide(CO2)emissions.Thus,it is essential to understand the influencing factors of vehicle emissions and establish a corresponding evaluation model for the emission estimation of operating vehicles.This paper reviews different methods of measuring vehicle emissions,including laboratory measurements,on-road measurements,and tunnel measurements.Then,we summarize the factors affecting the emission evaluation of operating vehicles based on the vehicle operating features and road environment.Finally,the applications of vehicle emission evaluation models are analyzed,including the emission assessment of the vehicles operating at road segments and intersections.Based on this review,one can conclude that selecting different measurements will significantly impact the assessment of the vehicle emission results and the applicable scope of the measurements.Considering the different influencing factors of the operating vehicle emissions will have an impact on the model application of the vehicle emission evaluation.Moreover,several analysis methods for new technology vehicles can compensate for the potential lack in connectedness with the rapid development of new energy vehicle technology and the improvement of intelligent transportation systems(ITS).展开更多
Vehicle exhaust and transported biomass burning emissions are important air pollution sources in many urban areas,and domestic cooking with biomass fuels causes indoor air pollution in many rural areas.Using agricultu...Vehicle exhaust and transported biomass burning emissions are important air pollution sources in many urban areas,and domestic cooking with biomass fuels causes indoor air pollution in many rural areas.Using agricultural waste-generated synthetic fuels can reduce emissions both from vehicles and biomass burning.To estimate the potential benefits of synthetic diesel in Beijing,the emission factor model for the Beijing vehicle fleet was applied to estimate exhaust emissions for the 2015-2030 period.Compared with 100%petroleum diesel,a 20%synthetic diesel blend reduced diesel fleet emissions by 24%for carbon monoxide,30%for total hydrocarbons,5.5%for nitrogen oxides,and 19%for fine particulate matter with an aerodynamic diameter of≤2.5μm(PM2.5)while using 100%synthetic diesel decreased emissions by 36%for carbon monoxide,48%for total hydrocarbons,10%for nitrogen oxides,and 34%for PM2.5.The use of biomass for producing synthetic fuels rather than burning in the field also reduces air pollution.Over 60g of PM2.5 agricultural open-field burning emissions are avoided per liter of synthetic fuel produced.Replacing solid crop residues with synthetic liquid fuels in household cooking would reduce PM2.5 emissions by more than 90%.展开更多
To investigate the impact of emission controls on ammonia(NH_(3)) pollution in urban atmosphere, observation on NH_(3)(1 hr interval) was performed in Shanghai before, during and after the 2019 China International Imp...To investigate the impact of emission controls on ammonia(NH_(3)) pollution in urban atmosphere, observation on NH_(3)(1 hr interval) was performed in Shanghai before, during and after the 2019 China International Import Expo (CIIE) event, along with measurements on inorganic ions, organic tracers and stable nitrogen isotope compositions of ammonium in PM_(2.5). NH_(3)during the CIIE period was 6.5±1.0μg/m^(3), which is 41% and 32% lower than that before and after the event, respectively. Such a decrease was largely ascribed to the emission controls in nonagricultural sources, of which contribution for measured NH_(3)in control phase abated by ~20% compared to that during uncontrol period. Molecular compositions of PAHs and hopanes further suggested a dominant role of the reduced vehicle emissions in the urban NH_(3)abatement during the CIIE period. Our results revealed that vehicle exhaust emission control is an effective way to mitigate NH_(3)pollution and improve air quality in Chinese urban areas.展开更多
Ground-level ozone is a harmful air pollutant associated with several health issues. Ozone concentrations have exceeded the National Ambient Air Quality Standards (NAAQS) in the Chicago metropolitan area on hot summer...Ground-level ozone is a harmful air pollutant associated with several health issues. Ozone concentrations have exceeded the National Ambient Air Quality Standards (NAAQS) in the Chicago metropolitan area on hot summer days for many years because of nitrogen oxide and volatile organic compound emissions. Annual fourth highest 8-hour ozone concentrations have been between 0.070 and 0.084 ppm at several monitoring sites in Cook county, during the 2016-2018 time period. The continuous measurement of nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>) was conducted in several communities in Chicago in 2017. The air pollution impacts the health of all who live in the area. The data were used to analyze correlations between the O<sub>3</sub> distribution and its association with ambient concentrations of NO<sub>2</sub> from transportation emissions. Higher concentrations in NO<sub>2</sub> and O<sub>3</sub> occurred in succession in the daytime. The diurnal variation of O<sub>3</sub> concentration was analyzed. The daily cycle of NO<sub>2</sub> concentration reaches a maximum in the late morning and has smaller nighttime concentrations. The daily cycle of ozone concentration reaches the maximum in the afternoon and also becomes smaller for nighttime concentrations. In addition, relationships were found between O<sub>3</sub> and NO<sub>2</sub>. Monthly variations of ozone and NO<sub>2</sub> are presented. Some options to reduce ozone pollution are presented.展开更多
It is a matter of concern that despite taking measures to control aromatic content in gasoline in India, the levels of volatile organic compounds are rising again in many of the Indian cities. The transport sector ha...It is a matter of concern that despite taking measures to control aromatic content in gasoline in India, the levels of volatile organic compounds are rising again in many of the Indian cities. The transport sector has been one of the major sectors which are re-sponsible for worsening the air quality of Delhi city. While thousands of toxic com-pounds are emitted from automobiles, industries, gasoline stations as well as service stations, however, volatile organic compounds are important due to their significant contribution to ozone formation, cancer, and non-cancer health risks. In this study, roadside levels of benzene, toluene, ethylbenzene and xylenes (BTEX) were investi-gated at the one of the major arterial road of Delhi city. Air samples were collected by activated coconut shell charcoal adsorbent tubes. The BTEX concentrations were de-termined by gas chromatography-flame ionization detector (GC-FID) technique. The mean concentrations of benzene, toluene, ethylbenzene and xylenes were, respectively, 60.22, 162.68, 49.42 and 25.25 μg/m<sup>3</sup>. The relative concentration distribution pattern and mutual correlation analysis indicated that in BTEX had sources other than vehicle emission at the study site. The samples collected, showed that BTEX had significantly higher concentrations in winter than those in spring and summer.展开更多
文摘While Unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies,the concentrations of hydrocarbons (HC) and earbon monoxides (CO) in emissions were analyzed on Santana engine Dynamometer under a standard test cycle, and total exhaust particles were collected from engines using leaded and unleaded gasoline. It was found that unleaded gasoline reduced the emissions of CO and HC, and decreased the quantity of vehicle exhaust particulate matters by 60%.With the unlead gasoline, only 23 kinds of organic substances, adsorbed in the particles, were identified by gas chromatography/mass spectrometer (GC/MS) while 32 components were detected using the leaded gasoline. The results of in vitro Salmonella/ microsomal test and micronucleus induction assay in CHL cells indicated that both types of gasoline increased the number of histidine-independent colonies and the frequencies of micronucleus induction; no significant differellce was found in their mutagenicity.
文摘Rather than parking at nearby hourly parking lots, many passenger-picking-up vehicles prefer to idle at terminals and/or drive cycling around terminal facilities. As a result, extra vehicle emissions may be produced in an airport area. Even though there are limited studies on such emissions at airports, these estimations were normally based on the date emission models, which might cause bias in emission estimations. This paper proposes an approach to employ the floating car method and Global Positioning System (GPS) to record speeds and acceleration rates of idling and cycling vehicles at airport terminals. The tests were conducted under different time periods and traffic demands with different waiting time. The speeds and acceleration rates are synthesized to yield Vehicle Specific Power's (VSP) and Operational Mode (OM) distributions. Utilizing the Environmental Protection Agency (EPA) emission estimation model Motor Vehicle Emission Simulator (MOVES), pollutants and green house gas emission indexes (e.g. NOx, CO, CO2 and HC) and fuel consumptions can be easily estimated. As an illustration of the proposed approach, the research team collected GPS data at a terminal in Houston William Hobby Airport (HOU), and calculated the VSP distributions and OM distributions. Emissions of passenger-picking-up vehicles around these congested airport terminals.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(grant no.300102212107)Scientific Research Project of Zhejiang Provincial Department of Transportation,funding number 2020025。
文摘This paper aimed to investigate the correlation between carbon emissions,fuel consumption,and speed limit.A theoretical model was derived based on the energy conservation law,which expresses the relationship between vehicle's fuel consumption and speed.Subsequently,a total of 40 sets of fuel consumption data were collected through field tests to verify the accuracy of the theoretical model at different speeds and different road longitudinal slope combinations.The fuel consumption was then converted to carbon emissions according to the carbon emission factors specified by Intergovernmental Panel on Climate Change(IPCC).In the field experiment,two types of cars and trucks,which are most common on the expressways in China,were selected.Finally,the travel speed under different posted speed limits was obtained through the previously established model,and the carbon emission changes of different vehicle types at different limited speeds are calculated.The results show that the speed limit has a significant impact on fuel consumption and carbon emissions.When the speed limit increased from 80 to 120 km/h,average vehicle speeds increased about 21%-27%,and fuel consumption and carbon emissions increased from approximately 33%-38%.Another interesting result was that the vehicle's fuel consumption and carbon emissions are only affected by speed.The results of the study explore the effect of speed limits on carbon emissions and provide evidence for road managers to set reasonable speed limits.
文摘The largest urban areas of Mexico cities have witnessed high levels of air pollution in the past few decades. The most important air pollutants are ozone and paniculate matter with levels that are still far above current air quality standard. In this work we studied exhaust and evaporative emissions of Mexico City metropolitan area (MAMC) vehicles using fuels in which sulfur content was varied from 89×10^-6 to 817×10^-6, and calculated the ozone forming potential of emissions as well as the specific reactivity of the exhaust for each average fleet-fuel combinations. Data on emission levels were compared to those obtained in 2000 for the same vintage of vehicles. The almost twofold increase in emissions found could be due to degradation of the exhaust emissions control systems.
基金Project supported by the Key Technologies Research and Development Program of Guangdong Province Foundation (No. 2003A3040301).
文摘Vehicle emission has been the major source of air pollution in urban areas in the past two decades. This article proposes an artificial neural network model for identifying the taxi gross emitters based on the remote sensing data. After carrying out the field test in Guangzhou and analyzing various factors from the emission data, the artificial neural network modeling was proved to be an advisable method of identifying the gross emitters. On the basis of the principal component analysis and the selection of algorithm and architecture, the Back-Propagation neural network model with 8-17-1 architecture was established as the optimal approach for this purpose. It gave a percentage of hits of 93%. Our previous research result and the result from aggression analysis were compared, and they provided respectively the percentage of hits of 81.63% and 75%. This comparison demonstrates the potentiality and validity of the proposed method in the identification of taxi gross emitters.
文摘The dynamometer tests with different driving cycles and the real-world tests are presented. Results indicated the pollutants emission factors and fuel consumption factor with ECE15+EUDC driving cycle usually take the lowest value and with real world driving cycle occur the highest value, and different driving cycles will lead to significantly different vehicle emission factors with the same vehicle. Relative to the ECE15+EUDC driving cycle, the increasing rate of pollutant emission factors of CO, NOx and HC are -0.42—2.99, -0.32 —0.81 and -0.11—11 with FTP75 testing, 0.11—1.29, -0.77—0.64 and 0.47—10.50 with Beijing 1997 testing and 0.25—1.83, 0.09—0.75 and -0.58—1.50 with real world testing. Compared to the carburetor vehicles, the retrofit and MPI+TWC vehicles' pollution emission factors decrease with different degree. The retrofit vehicle(Santana) will reduce 4.44%—58.44% CO, -4.95%—36.79% NOx, -32.32%—33.89% HC, and -9.39%—14.29% fuel consumption, and especially that the MPI+TWC vehicle will decrease CO by 82.48%—91.76%, NOx by 44.87%—92.79%, HC by 90.00%—93.89% and fuel consumption by 5.44%—10.55%. Vehicles can cause pollution at a very high rate when operated in high power modes; however, they may not often operate in these high power modes. In analyzing vehicle emissions, it describes the fraction of time that vehicles operate in various power modes. In Beijing, vehicles spend 90% of their operation in low power modes or decelerating.
基金Project (No. M203102) supported by the Natural Science Foundationof Zhejiang Province, China
文摘Vehicle emissions are a major source of air pollution in urban areas. The impact on urban air quality could be reduced if the trends of vehicle emissions are well understood. In the present study, the real-world emissions of vehicles were measured using a remote sensing system at five sites in Hangzhou, China from February 2004 to August 2005. More than 48000 valid gasoline powered vehicle emissions of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NO) were measured. The results show that petrol vehicle fleet in Hangzhou has considerably high CO emissions, with the average emission concentration of 2.71 %±0.02%, while HC and NO emissions are relatively lower, with the average emission concentration of (153.72±1.16)×10-6 and (233.53±1.80)×10-6, respectively. Quintile analysis of both average emission concentration and total amount emissions by model year suggests that in-use emission differences between well maintained and badly maintained vehicles are larger than the age-dependent deterioration of emissions. In addition, relatively new high polluting vehicles are the greatest contributors to fleet emissions with, for example, 46.55% of carbon monoxide fleet emissions being produced by the top quintile high emitting vehicles from model years 2000-2004. Therefore, fleet emissions could be significantly reduced if new highly polluting vehicles were subject to effective emissions testing followed by appropriate remedial action.
文摘As being an effective real-time method of monitoring vehicle emissions on-road, a remote sensing system based on the tunable diode laser (TDL) technology was presented, and the key technologies were discussed. A field test in Guangzhou(Guangdong, China) was performed and was found that the factors, such as slope, instantaneous speed and acceleration, had significant influence on the detectable rate of the system. Based on the results, the proposal choice of testing site was presented.
文摘Biodiesel is one of the most popular prospective alternative fuels and can be obtained from a variety of sources. Waste frying oil is one such source along with the various raw vegetable oils. However, some specific technical treatments are required to improve certain fuel properties such as viscosity and calorific value of the biodiesel being obtained from waste cooking oil methyl ester (WCOME). Various treatments are applied depending on the source and therefore the composition of the cooking oil. This research investigated the performance of WCOME as an alternative biofuel in a four-stroke direct injection diesel engine. An 8-mode test was undertaken with diesel fuel and five WCOME blends. The best compromise blend in terms of performance and emissions was identified. Results showed that energy utilization factors of the blends were similar within the range of the operational parameters (speed, load and WCOME content). Increasing biodiesel content produced slightly more smoke and NOx for a great majority of test points, while the CO and THC emissions were lower.
文摘As a megacity with thriving economy, Shanghai is experiencing rapid motorisation and confronted with traffic congestion problems despite its low car ownership. It is of value to look into the policies on emission control of motor vehicle and congestion reduction in such a city to explore how to reconcile mobility enhancement with the environment. Results of a dynamic simulation displayed time paths of emissions from motor vehicles in Shanghai over the period from 2000 to 2020. The simulation results showed that early policies on emission control of motor vehicle could bring about far-reaching effects on emission reduc- tion, and take advantage of available low-polluting technologies and technical innovation over time. Travel demand management would play an important role in curbing congestion and reducing motor vehicle pollution by calming down car ownership rise and deterring inefficient trips as well as reducing fuel waste caused by congestion.
基金The National Natural Science Foundation of China(No.51178157)High-Level Project of the Top Six Talents in Jiangsu Province(No.JXQC-021)+1 种基金Key Science and Technology Program in Henan Province(No.182102310004)the Humanities and Social Science Research Programs Foundation of the M inistry of Education of China(No.18YJAZH028)
文摘The projection pursuit model is used to study the assessment of air pollution caused by vehicle emissions at intersections. Based on the analysis of the characteristics and regularities of vehicle emissions at intersections, a vehicle emission model based on projection pursuit is established, and the bat algorithm is used to solve the optimization function. The research results show that the projection pursuit model can not only measure the air pollution of vehicle emissions at intersections, but also effectively evaluate the level of vehicle exhaust emissions at intersections. Taking the air pollution caused by vehicle emissions at intersections as the research object and considering the influence factors of vehicle emissions on air pollution comprehensively, the evaluation index system of vehicle emissions at intersections on air pollution is constructed. Based on large data analysis, a prediction model of air pollution caused by vehicle emissions at intersections is constructed, and an improved bat algorithm is used to realize the assessment process. The application results show that the prediction model of vehicle emissions at intersections can define the degree of air pollution caused by vehicle emissions, and it has good guiding significance and practical value for solving the problem of air pollution caused by vehicle emissions.
基金This project is supported by Provincial Natural Science Foundation of Guangdong, China and Provincial Environmental Protection Science Foundation of Guangdong, China(No.320-D38000).
文摘The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.
基金The National High Technology Research and Development Program of China (863 Program ) (No. 2011AA110304 )the National Natural Science Foundation of China (No. 50908100)
文摘To reduce vehicle emissions in road networks, a new signal coordination algorithm based on approximate dynamic programming (ADP) is developed for two intersections. Taking the Jetta car as an experimental vehicle, field tests are conducted in Changchun Street of Changchun city and vehicle emission factors in complete stop and uniform speed states are collected. Queue lengths and signal light colors of approach lanes are selected as state variables, and green switch plans are selected as decision variables of the system. Then the calculation model of the optimization index during the planning horizon is developed based on the basis function method of the ADP. The temporal-difference algorithm is employed to update the weighting factor vector of the approximate function. Simulations are conducted in Matlab and the results show that the established algorithm outperforms the conventional coordination algorithm in reducing vehicle emissions by 8.2%. Sensitive analysis of the planning horizon length on the evaluation index is also conducted and the statistical results show that the optimal length of the planning horizon is directly proportional to the traffic load.
基金supported by the Natural Sciences Foundation of China(Nos.91544232&51408015)the Ministry of Environmental Protection Special Funds for Scientific Research on Public Causes(No.201409006)+4 种基金the Beijing municipal science and technology plan projects(No.Z131100001113029)the 13th graduate students of science and technology fund of Beijing University of Technology(ykj-2014-11484)the projects supported by Beijing Municipal Commission of Science and Technology(No.Z141100001014002)Beijing Municipal Commission of Education(No.PXM2016_014204_001029)National Science and Technology Support Project of China(No.2014BAC23B02)
文摘A total of 15 light-duty diesel vehicles(LDDVs) were tested with the goal of understanding the emission factors of real-world vehicles by conducting on-board emission measurements. The emission characteristics of hydrocarbons(HC) and nitrogen oxides(NOx) at different speeds, chemical species profiles and ozone formation potential(OFP) of volatile organic compounds(VOCs) emitted from diesel vehicles with different emission standards were analyzed. The results demonstrated that emission reductions of HC and NOxhad been achieved as the control technology became more rigorous from Stage I to Stage IV. It was also found that the HC and NOxemissions and percentage of O2 dropped with the increase of speed, while the percentage of CO2 increased. The abundance of alkanes was significantly higher in diesel vehicle emissions, approximately accounting for 41.1%–45.2%, followed by aromatics and alkenes. The most abundant species were propene,ethane, n-decane, n-undecane, and n-dodecane. The maximum incremental reactivity(MIR)method was adopted to evaluate the contributions of individual VOCs to OFP. The results indicated that the largest contributors to O3 production were alkenes and aromatics, which accounted for 87.7%–91.5%. Propene, ethene, 1,2,4-trimethylbenzene, 1-butene, and1,2,3-trimethylbenzene were the top five VOC species based on their OFP, and accounted for 54.0%-64.8% of the total OFP. The threshold dilution factor was applied to analyze the possibility of VOC stench pollution. The majority of stench components emitted from vehicle exhaust were aromatics, especially p-diethylbenzene, propylbenzene, m-ethyltoluene, and p-ethyltoluene.
基金supported by the National Key R&D Program(2016YFC0201504)the National Natural Science Foundation of China(Nos.41822505 and 41571447)+2 种基金National Research Program for Key Issues in Air Pollution Control(DQGG0201&0207)Beijing Nova Program(Z181100006218077)SEE Foundation.
文摘Vehicle evaporation is an essential source of VOCs in cities but is not well understood in China.Reported emission factors from previous studies are not enough for understanding the atmospheric chemical process of vehicular evaporative VOCs.In this work,a serious of detailed VOCs speciation profiles are developed based on test processes and emission processes.A mass balance method was used to divide different emission processes during diurnal tests.The results show that headspace vapor of gasoline cannot represent the real-world vehicle evaporation because of the significant differences in VOCs speciation profiles,especially for aromatics.To further distinguish emissions from evaporation and exhaust,only the ratios of MTBE/benzene and MTBE/toluene can serve as indicators when considering species from all evaporative processes.Besides,emissions from different sources change significantly with the seasons.To solve these problems,we developed a monthly comprehensive evaporation speciation profile.The individual profiles at the emission processes are weighted by the emission of the in-use vehicle fleet in Beijing to derive the comprehensive speciation profile of evaporative VOCs.Ozone formation potential(OFP)and secondary organic aerosol potential(SOAP)were used to evaluate the environmental impact.For SOAP,100 g evaporative emissions are equal to 6.05-12.71 g toluene in different months,much higher than that given using headspace vapors,especially in winter(7.2 times higher in December).These findings would improve our understanding of the evaporative VOCs emissions in China and their environmental impacts(e.g.,O3 and SOA formation).
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 71901035, 51878062, and 51908462)in part by the Fundamental Research Funds for the Central Universities (Grant No. 300102210113)by the Higher Education Discipline Innovation Project 111 (Grant No. B20035)
文摘With the increasing international consensus concerning the negative effects of climate change,reducing greenhouse gases has become a higher priority in government policies and research committees.The transportation sector generates approximately 29%of the total greenhouse gas emissions and 25%of the global energy related carbon dioxide(CO2)emissions.Thus,it is essential to understand the influencing factors of vehicle emissions and establish a corresponding evaluation model for the emission estimation of operating vehicles.This paper reviews different methods of measuring vehicle emissions,including laboratory measurements,on-road measurements,and tunnel measurements.Then,we summarize the factors affecting the emission evaluation of operating vehicles based on the vehicle operating features and road environment.Finally,the applications of vehicle emission evaluation models are analyzed,including the emission assessment of the vehicles operating at road segments and intersections.Based on this review,one can conclude that selecting different measurements will significantly impact the assessment of the vehicle emission results and the applicable scope of the measurements.Considering the different influencing factors of the operating vehicle emissions will have an impact on the model application of the vehicle emission evaluation.Moreover,several analysis methods for new technology vehicles can compensate for the potential lack in connectedness with the rapid development of new energy vehicle technology and the improvement of intelligent transportation systems(ITS).
文摘Vehicle exhaust and transported biomass burning emissions are important air pollution sources in many urban areas,and domestic cooking with biomass fuels causes indoor air pollution in many rural areas.Using agricultural waste-generated synthetic fuels can reduce emissions both from vehicles and biomass burning.To estimate the potential benefits of synthetic diesel in Beijing,the emission factor model for the Beijing vehicle fleet was applied to estimate exhaust emissions for the 2015-2030 period.Compared with 100%petroleum diesel,a 20%synthetic diesel blend reduced diesel fleet emissions by 24%for carbon monoxide,30%for total hydrocarbons,5.5%for nitrogen oxides,and 19%for fine particulate matter with an aerodynamic diameter of≤2.5μm(PM2.5)while using 100%synthetic diesel decreased emissions by 36%for carbon monoxide,48%for total hydrocarbons,10%for nitrogen oxides,and 34%for PM2.5.The use of biomass for producing synthetic fuels rather than burning in the field also reduces air pollution.Over 60g of PM2.5 agricultural open-field burning emissions are avoided per liter of synthetic fuel produced.Replacing solid crop residues with synthetic liquid fuels in household cooking would reduce PM2.5 emissions by more than 90%.
基金financially supported by the National Natural Science Foundation of China(Nos. 42007202,41773117)the National Key R&D Plan, Ministry of Science and Technology of China(Mechanism and chemical process characterization of atmospheric particulate matter multi-isotope fractionation)(No. 2017YFC0212703)+1 种基金the Shanghai Science and Technology Innovation Action Plan(No.20dz1204011)the program of Institute of Eco-Chongming and ECNU Happiness Flower。
文摘To investigate the impact of emission controls on ammonia(NH_(3)) pollution in urban atmosphere, observation on NH_(3)(1 hr interval) was performed in Shanghai before, during and after the 2019 China International Import Expo (CIIE) event, along with measurements on inorganic ions, organic tracers and stable nitrogen isotope compositions of ammonium in PM_(2.5). NH_(3)during the CIIE period was 6.5±1.0μg/m^(3), which is 41% and 32% lower than that before and after the event, respectively. Such a decrease was largely ascribed to the emission controls in nonagricultural sources, of which contribution for measured NH_(3)in control phase abated by ~20% compared to that during uncontrol period. Molecular compositions of PAHs and hopanes further suggested a dominant role of the reduced vehicle emissions in the urban NH_(3)abatement during the CIIE period. Our results revealed that vehicle exhaust emission control is an effective way to mitigate NH_(3)pollution and improve air quality in Chinese urban areas.
文摘Ground-level ozone is a harmful air pollutant associated with several health issues. Ozone concentrations have exceeded the National Ambient Air Quality Standards (NAAQS) in the Chicago metropolitan area on hot summer days for many years because of nitrogen oxide and volatile organic compound emissions. Annual fourth highest 8-hour ozone concentrations have been between 0.070 and 0.084 ppm at several monitoring sites in Cook county, during the 2016-2018 time period. The continuous measurement of nitrogen dioxide (NO<sub>2</sub>) and ozone (O<sub>3</sub>) was conducted in several communities in Chicago in 2017. The air pollution impacts the health of all who live in the area. The data were used to analyze correlations between the O<sub>3</sub> distribution and its association with ambient concentrations of NO<sub>2</sub> from transportation emissions. Higher concentrations in NO<sub>2</sub> and O<sub>3</sub> occurred in succession in the daytime. The diurnal variation of O<sub>3</sub> concentration was analyzed. The daily cycle of NO<sub>2</sub> concentration reaches a maximum in the late morning and has smaller nighttime concentrations. The daily cycle of ozone concentration reaches the maximum in the afternoon and also becomes smaller for nighttime concentrations. In addition, relationships were found between O<sub>3</sub> and NO<sub>2</sub>. Monthly variations of ozone and NO<sub>2</sub> are presented. Some options to reduce ozone pollution are presented.
文摘It is a matter of concern that despite taking measures to control aromatic content in gasoline in India, the levels of volatile organic compounds are rising again in many of the Indian cities. The transport sector has been one of the major sectors which are re-sponsible for worsening the air quality of Delhi city. While thousands of toxic com-pounds are emitted from automobiles, industries, gasoline stations as well as service stations, however, volatile organic compounds are important due to their significant contribution to ozone formation, cancer, and non-cancer health risks. In this study, roadside levels of benzene, toluene, ethylbenzene and xylenes (BTEX) were investi-gated at the one of the major arterial road of Delhi city. Air samples were collected by activated coconut shell charcoal adsorbent tubes. The BTEX concentrations were de-termined by gas chromatography-flame ionization detector (GC-FID) technique. The mean concentrations of benzene, toluene, ethylbenzene and xylenes were, respectively, 60.22, 162.68, 49.42 and 25.25 μg/m<sup>3</sup>. The relative concentration distribution pattern and mutual correlation analysis indicated that in BTEX had sources other than vehicle emission at the study site. The samples collected, showed that BTEX had significantly higher concentrations in winter than those in spring and summer.