To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,...To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithm...The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.展开更多
As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with t...As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.展开更多
The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To ge...The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.展开更多
This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, ...This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, based on the traffic conditions. During the periods of peak traffic hours, the vehicles travel at low speeds and during non-peak hours, the vehicles travel at higher speeds. A survey by TCI and IIM-C (2014) found that stoppage delay as percentage of journey time varied between five percent and 25 percent, and was very much dependent on the characteristics of routes. Costs of delay were also estimated and found not to affect margins by significant amounts. This study aims to overcome such problems arising out of traffic congestions that lead to unnecessary delays and hence, loss in customers and thereby valuable revenues to a company. This study suggests alternative routes to minimize travel times and travel distance, assuming a congestion in traffic situation. In this study, an efficient GA-based algorithm has been developed for the TDVRP, to minimize the total distance travelled, minimize the total number of vehicles utilized and also suggest alternative routes for congestion avoidance. This study will help to overcome and minimize the negative effects due to heavy traffic congestions and delays in customer service. The proposed algorithm has been shown to be superior to another existing algorithm in terms of the total distance travelled and also the number of vehicles utilized. Also the performance of the proposed algorithm is as good as the mathematical model for small size problems.展开更多
With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various so...With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.展开更多
This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic ...This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion.展开更多
A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and cl...A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and classification of genetic individuals in the evolutionary procedure,the neural network distributes multiple species into different regions of the search space. Furthermore,the neural network dynamically expands each search region or establishes new region for good offspring individuals to continuously keep the diversification of the genetic population. As a result,the premature problem inherent in genetic algorithm is alleviated and better tradeoff between the ability of exploration and exploitation can be obtained. The experimental results on the vehicle routing problem with time windows also show the good performance of the proposed genetic algorithm.展开更多
The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizi...The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The sol...The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational results are then reported. The computational study underscores the importance of integrating the inventory and vehicle routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem.展开更多
This paper discusses the concept of priorities based on Time and Quantity, which arise on the occasion of vehicle routing. It explains the interconnectivity between the priorities based on Time and Quantity and formul...This paper discusses the concept of priorities based on Time and Quantity, which arise on the occasion of vehicle routing. It explains the interconnectivity between the priorities based on Time and Quantity and formulates a dynamic that shows the fusion of Time and Quantity into the Vehicle Routing Problem’s objective function. The paper focuses on the development of an expanded VRP objective function in which the priorities based on Time and Quantities are imbedded thus opens a vista of knowledge, aggregating and modelling the priorities as a mean to reduce transportation costs that lead to an organized and more timely deliveries of goods employing various of today’s proposed logistic systems coupled with widely used positioning systems.展开更多
Vehicle routing problem with time-varying speed ( VRPTS) is a generalization of vehicle routing problem in which the travel speed between two locations depends on the passing areas and the time of a day. This paper pr...Vehicle routing problem with time-varying speed ( VRPTS) is a generalization of vehicle routing problem in which the travel speed between two locations depends on the passing areas and the time of a day. This paper proposes a simple model for estimating time-varying travel speeds in VRPTS that relieves much burden to the data-related problems. The study further presents three heuristics ( saving technique,proximity priority searching technique,and insertion technique) for VRPTS,developed by extending and modifying the existing heuristics for conventional VRP. The results of computational experiments demonstrate that the proposed estimation model performs well and the saving technique is the best among the three heuristics.展开更多
The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendl...The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.展开更多
In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the...In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the capacitated vehicle routing problem (CVRP) and also their variants. The VRP is classified as an NP-hard problem. Hence, the use of exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. The vehicle routing problem comes under combinatorial problem. Hence, to get solutions in determining routes which are realistic and very close to the optimal solution, we use heuristics and meta-heuristics. In this paper we discuss the various exact methods and the heuristics and meta-heuristics used to solve the VRP and its variants.展开更多
This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the ...This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.展开更多
Taking the distribution route optimization of refined oil as background, this paper studies the inventory routing problem of refined oil distribution based on working time equilibrium. In consideration of the constrai...Taking the distribution route optimization of refined oil as background, this paper studies the inventory routing problem of refined oil distribution based on working time equilibrium. In consideration of the constraints of vehicle capacity, time window for unloading oil, service time and demand of each gas station, we take the working time equilibrium of each vehicle as goal and establish an integer programming model for the vehicle routing problem of refined oil distribution, the objective function of the model is to minimize the maximum working time of vehicles. To solve this model, a Lingo program was written and a heuristic algorithm was designed. We further use the random generation method to produce an example with 10 gas stations. The local optimal solution and approximate optimal solution are obtained by using Lingo software and heuristic algorithm respectively. By comparing the approximate optimal solution obtained by heuristic algorithm with the local optimal solution obtained by Lingo software, the feasibility of the model and the effectiveness of the heuristic algorithm are verified. The results of this paper provide a theoretical basis for the scheduling department to formulate the oil distribution plan.展开更多
该文研究带时间窗约束的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),这是一个典型的NP-Hard问题。针对传统粒子群算法求解带时间窗约束的车辆路径问题容易陷入局部最优的缺陷,提出了一种基于多策略方法改进的粒子...该文研究带时间窗约束的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),这是一个典型的NP-Hard问题。针对传统粒子群算法求解带时间窗约束的车辆路径问题容易陷入局部最优的缺陷,提出了一种基于多策略方法改进的粒子群算法(Multi-Strategy improved particle Swarm Optimization Algorithm,MSPSO)来解决该问题。该算法采用惯性权重递减策略,使得算法在前期的全局搜索和后期的局部搜索都能够有良好的表现,通过引入随机选择策略更新粒子最优位置,可以增加解空间的多样性,有效避免算法陷入局部最优。最后通过测试Solomon Benchmark算例的结果,在25个客户的C103数据集上MSPSO算法对比RWPSO算法的行驶距离降低了38.29,对比S-PSO算法在C103、R103这两个数据集与最优解误差分别降低了1.76%和3.99%。在50个客户C1系列数据集上MSPSO算法对比PSO算法行驶距离分别减少了14.26、45.66、67.7,与数据集的最优解误差基本能保持在1%以内。从实验结果可以证明MSPSO算法在求解VRPTW问题方面具有优越性和有效性。展开更多
基金supported by Natural Science Foundation Project of Gansu Provincial Science and Technology Department(No.1506RJZA084)Gansu Provincial Education Department Scientific Research Fund Grant Project(No.1204-13).
文摘To provide the supplier with the minimizum vehicle travel distance in the distribution process of goods in three situations of new customer demand,customer cancellation service,and change of customer delivery address,based on the ideas of pre-optimization and real-time optimization,a two-stage planning model of dynamic demand based vehicle routing problem with time windows was established.At the pre-optimization stage,an improved genetic algorithm was used to obtain the pre-optimized distribution route,a large-scale neighborhood search method was integrated into the mutation operation to improve the local optimization performance of the genetic algorithm,and a variety of operators were introduced to expand the search space of neighborhood solutions;At the real-time optimization stage,a periodic optimization strategy was adopted to transform a complex dynamic problem into several static problems,and four neighborhood search operators were used to quickly adjust the route.Two different scale examples were designed for experiments.It is proved that the algorithm can plan the better route,and adjust the distribution route in time under the real-time constraints.Therefore,the proposed algorithm can provide theoretical guidance for suppliers to solve the dynamic demand based vehicle routing problem.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
文摘The time dependent vehicle routing problem with time windows(TDVRPTW) is considered. A multi-type ant system(MTAS) algorithm hybridized with the ant colony system(ACS)and the max-min ant system(MMAS) algorithms is proposed. This combination absorbs the merits of the two algorithms in solutions construction and optimization separately. In order to improve the efficiency of the insertion procedure, a nearest neighbor selection(NNS) mechanism, an insertion local search procedure and a local optimization procedure are specified in detail. And in order to find a balance between good scouting performance and fast convergence rate, an adaptive pheromone updating strategy is proposed in the MTAS. Computational results confirm the MTAS algorithm's good performance with all these strategies on classic vehicle routing problem with time windows(VRPTW) benchmark instances and the TDVRPTW instances, and some better results especially for the number of vehicles and travel times of the best solutions are obtained in comparison with the previous research.
基金Supported by the National Natural Science Foundation of China(No.51565036)
文摘As a new variant of vehicle routing problem( VRP),a finished vehicle routing problem with time windows in finished vehicle logistics( FVRPTW) is modeled and solved. An optimization model for FVRPTW is presented with the objective of scheduling multiple transport routes considering loading constraints along with time penalty function to minimize the total cost. Then a genetic algorithm( GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.Especially,in order to accelerate its convergence,an improved termination condition is given. Finally,a case study is used to evaluate the effectiveness of the proposed algorithm and a series of experiments are conducted over a set of finished vehicle routing problems. The results demonstrate that the proposed approach has superior performance and satisfies users in practice. Contributions of the study are the modeling and solving of a complex FVRPTW in logistics industry.
文摘The VRP is classified as an NP-hard problem. Hence exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. To get solutions in determining routes which are realistic and very close to the actual solution, we use heuristics and metaheuristics which are of the combinatorial optimization type. A literature review of VRPTW, TDVRP, and a metaheuristic such as the genetic algorithm was conducted. In this paper, the implementation of the VRPTW and its extension, the time-dependent VRPTW (TDVRPTW) has been carried out using the model as well as metaheuristics such as the genetic algorithm (GA). The algorithms were implemented, using Matlab and HeuristicLab optimization software. A plugin was developed using Visual C# and DOT NET framework 4.5. Results were tested using Solomon’s 56 benchmark instances classified into groups such as C1, C2, R1, R2, RC1, RC2, with 100 customer nodes, 25 vehicles and each vehicle capacity of 200. The results were comparable to the earlier algorithms developed and in some cases the current algorithm yielded better results in terms of total distance travelled and the average number of vehicles used.
文摘This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, based on the traffic conditions. During the periods of peak traffic hours, the vehicles travel at low speeds and during non-peak hours, the vehicles travel at higher speeds. A survey by TCI and IIM-C (2014) found that stoppage delay as percentage of journey time varied between five percent and 25 percent, and was very much dependent on the characteristics of routes. Costs of delay were also estimated and found not to affect margins by significant amounts. This study aims to overcome such problems arising out of traffic congestions that lead to unnecessary delays and hence, loss in customers and thereby valuable revenues to a company. This study suggests alternative routes to minimize travel times and travel distance, assuming a congestion in traffic situation. In this study, an efficient GA-based algorithm has been developed for the TDVRP, to minimize the total distance travelled, minimize the total number of vehicles utilized and also suggest alternative routes for congestion avoidance. This study will help to overcome and minimize the negative effects due to heavy traffic congestions and delays in customer service. The proposed algorithm has been shown to be superior to another existing algorithm in terms of the total distance travelled and also the number of vehicles utilized. Also the performance of the proposed algorithm is as good as the mathematical model for small size problems.
基金This work was supported by the National Natural Science Foundation of China(61772196,61472136)the Hunan Provincial Focus Social Science Fund(2016ZDB006)Thanks to Professor Weijin Jiang for his guidance and suggestions on this research.Funding Statement。
文摘With the expansion of the application scope of social computing problems,many path problems in real life have evolved from pure path optimization problems to social computing problems that take into account various social attributes,cultures,and the emotional needs of customers.The actual soft time window vehicle routing problem,speeding up the response of customer needs,improving distribution efficiency,and reducing operating costs is the focus of current social computing problems.Therefore,designing fast and effective algorithms to solve this problem has certain theoretical and practical significance.In this paper,considering the time delay problem of customer demand,the compensation problem is given,and the mathematical model of vehicle path problem with soft time window is given.This paper proposes a hybrid tabu search(TS)&scatter search(SS)algorithm for vehicle routing problem with soft time windows(VRPSTW),which mainly embeds the TS dynamic tabu mechanism into the SS algorithm framework.TS uses the scattering of SS to avoid the dependence on the quality of the initial solution,and SS uses the climbing ability of TS improves the ability of optimizing,so that the quality of search for the optimal solution can be significantly improved.The hybrid algorithm is still based on the basic framework of SS.In particular,TS is mainly used for solution improvement and combination to generate new solutions.In the solution process,both the quality and the dispersion of the solution are considered.A simulation experiments verify the influence of the number of vehicles and maximum value of tabu length on solution,parameters’control over the degree of convergence,and the influence of the number of diverse solutions on algorithm performance.Based on the determined parameters,simulation experiment is carried out in this paper to further prove the algorithm feasibility and effectiveness.The results of this paper provide further ideas for solving vehicle routing problems with time windows and improving the efficiency of vehicle routing problems and have strong applicability.
文摘This study attempts to solve vehicle routing problem with time window (VRPTW). The study first identifies the real problems and suggests some recommendations on the issues. The technique used in this study is Genetic Algorithm (GA) and initialization applied is random population method. The objective of the study is to assign a number of vehicles to routes that connect customers and depot such that the overall distance travelled is minimized and the delivery operations are completed within the time windows requested by the customers. The analysis reveals that the problems experienced in vehicle routing with time window can be solved by GA and retrieved for optimal solutions. After a thorough study on VRPTW, it is highly recommended that a company should implement the optimal routes derived from the study to increase the efficiency and accuracy of delivery with time insertion.
文摘A novel genetic algorithm with multiple species in dynamic region is proposed,each of which occupies a dynamic region determined by the weight vector of a fuzzy adaptive Hamming neural network. Through learning and classification of genetic individuals in the evolutionary procedure,the neural network distributes multiple species into different regions of the search space. Furthermore,the neural network dynamically expands each search region or establishes new region for good offspring individuals to continuously keep the diversification of the genetic population. As a result,the premature problem inherent in genetic algorithm is alleviated and better tradeoff between the ability of exploration and exploitation can be obtained. The experimental results on the vehicle routing problem with time windows also show the good performance of the proposed genetic algorithm.
基金the Program of “Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System” funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
文摘The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational results are then reported. The computational study underscores the importance of integrating the inventory and vehicle routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem.
文摘This paper discusses the concept of priorities based on Time and Quantity, which arise on the occasion of vehicle routing. It explains the interconnectivity between the priorities based on Time and Quantity and formulates a dynamic that shows the fusion of Time and Quantity into the Vehicle Routing Problem’s objective function. The paper focuses on the development of an expanded VRP objective function in which the priorities based on Time and Quantities are imbedded thus opens a vista of knowledge, aggregating and modelling the priorities as a mean to reduce transportation costs that lead to an organized and more timely deliveries of goods employing various of today’s proposed logistic systems coupled with widely used positioning systems.
文摘Vehicle routing problem with time-varying speed ( VRPTS) is a generalization of vehicle routing problem in which the travel speed between two locations depends on the passing areas and the time of a day. This paper proposes a simple model for estimating time-varying travel speeds in VRPTS that relieves much burden to the data-related problems. The study further presents three heuristics ( saving technique,proximity priority searching technique,and insertion technique) for VRPTS,developed by extending and modifying the existing heuristics for conventional VRP. The results of computational experiments demonstrate that the proposed estimation model performs well and the saving technique is the best among the three heuristics.
基金supported by the National Natural Science Foundation of China(71571076)the National Key R&D Program for the 13th-Five-Year-Plan of China(2018YFF0300301).
文摘The multi-compartment electric vehicle routing problem(EVRP)with soft time window and multiple charging types(MCEVRP-STW&MCT)is studied,in which electric multi-compartment vehicles that are environmentally friendly but need to be recharged in course of transport process,are employed.A mathematical model for this optimization problem is established with the objective of minimizing the function composed of vehicle cost,distribution cost,time window penalty cost and charging service cost.To solve the problem,an estimation of the distribution algorithm based on Lévy flight(EDA-LF)is proposed to perform a local search at each iteration to prevent the algorithm from falling into local optimum.Experimental results demonstrate that the EDA-LF algorithm can find better solutions and has stronger robustness than the basic EDA algorithm.In addition,when comparing with existing algorithms,the result shows that the EDA-LF can often get better solutions in a relatively short time when solving medium and large-scale instances.Further experiments show that using electric multi-compartment vehicles to deliver incompatible products can produce better results than using traditional fuel vehicles.
文摘In this paper, we have conducted a literature review on the recent developments and publications involving the vehicle routing problem and its variants, namely vehicle routing problem with time windows (VRPTW) and the capacitated vehicle routing problem (CVRP) and also their variants. The VRP is classified as an NP-hard problem. Hence, the use of exact optimization methods may be difficult to solve these problems in acceptable CPU times, when the problem involves real-world data sets that are very large. The vehicle routing problem comes under combinatorial problem. Hence, to get solutions in determining routes which are realistic and very close to the optimal solution, we use heuristics and meta-heuristics. In this paper we discuss the various exact methods and the heuristics and meta-heuristics used to solve the VRP and its variants.
基金supported by the National Natural Science Foundation of China (61963022,51665025,61873328)。
文摘This paper addresses the open vehicle routing problem with time window(OVRPTW), where each vehicle does not need to return to the depot after completing the delivery task.The optimization objective is to minimize the total distance. This problem exists widely in real-life logistics distribution process.We propose a hybrid column generation algorithm(HCGA) for the OVRPTW, embedding both exact algorithm and metaheuristic. In HCGA, a label setting algorithm and an intelligent algorithm are designed to select columns from small and large subproblems, respectively. Moreover, a branch strategy is devised to generate the final feasible solution for the OVRPTW. The computational results show that the proposed algorithm has faster speed and can obtain the approximate optimal solution of the problem with 100 customers in a reasonable time.
文摘Taking the distribution route optimization of refined oil as background, this paper studies the inventory routing problem of refined oil distribution based on working time equilibrium. In consideration of the constraints of vehicle capacity, time window for unloading oil, service time and demand of each gas station, we take the working time equilibrium of each vehicle as goal and establish an integer programming model for the vehicle routing problem of refined oil distribution, the objective function of the model is to minimize the maximum working time of vehicles. To solve this model, a Lingo program was written and a heuristic algorithm was designed. We further use the random generation method to produce an example with 10 gas stations. The local optimal solution and approximate optimal solution are obtained by using Lingo software and heuristic algorithm respectively. By comparing the approximate optimal solution obtained by heuristic algorithm with the local optimal solution obtained by Lingo software, the feasibility of the model and the effectiveness of the heuristic algorithm are verified. The results of this paper provide a theoretical basis for the scheduling department to formulate the oil distribution plan.
文摘该文研究带时间窗约束的车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW),这是一个典型的NP-Hard问题。针对传统粒子群算法求解带时间窗约束的车辆路径问题容易陷入局部最优的缺陷,提出了一种基于多策略方法改进的粒子群算法(Multi-Strategy improved particle Swarm Optimization Algorithm,MSPSO)来解决该问题。该算法采用惯性权重递减策略,使得算法在前期的全局搜索和后期的局部搜索都能够有良好的表现,通过引入随机选择策略更新粒子最优位置,可以增加解空间的多样性,有效避免算法陷入局部最优。最后通过测试Solomon Benchmark算例的结果,在25个客户的C103数据集上MSPSO算法对比RWPSO算法的行驶距离降低了38.29,对比S-PSO算法在C103、R103这两个数据集与最优解误差分别降低了1.76%和3.99%。在50个客户C1系列数据集上MSPSO算法对比PSO算法行驶距离分别减少了14.26、45.66、67.7,与数据集的最优解误差基本能保持在1%以内。从实验结果可以证明MSPSO算法在求解VRPTW问题方面具有优越性和有效性。