Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Establis...Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Established routes frequently become stale, and existing communication flows are interrupted, incurring delay and additional overhead. In this paper we propose a novel hybrid routing protocol, which is the combined between of the table-driven routing and on-demand routing in VANET. It makes fast convergence in routing process, minimal drop links, making more reliable links, and adaptive with changing of VANET topology. With neighbor table is updated instantaneously, and using strong neighbor for routing process makes route discovery process start whenever it received requirement, and through using route mechanism appropriately it reduces significantly route overhead at each node. The simulation results illustrate the outstanding properties of our proposed routing protocol.展开更多
This paper studies a routing protocol used in the application of collecting real-time traffic information using mobile vehicles to monitor traffic status. The biggest challenge of vehicular ad hoe network routing prot...This paper studies a routing protocol used in the application of collecting real-time traffic information using mobile vehicles to monitor traffic status. The biggest challenge of vehicular ad hoe network routing protocol lies in the mismatch between the direction of moving vehicles and routed data. In order to deal with this mismatch, a mesh based routing protocol with a two-tier network architecture is proposed. By using mesh nodes deployed at intersections, data can be routed through an optimized path which can improve the delivery ratio and reduce the consumption of network resources. The simulation uses the mobility model processed from the GPS data of taxis mnning in Shanghai urban areas. The result shows that the proposed protocol outperforms the existing flooding protocol.展开更多
Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments ...Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.展开更多
A wireless ad-hoc network is a self-organized wireless network without fixed or backbone infrastructure. All nodes have routing capability and use peer-to-peer packet transmission or forward packets to other node usin...A wireless ad-hoc network is a self-organized wireless network without fixed or backbone infrastructure. All nodes have routing capability and use peer-to-peer packet transmission or forward packets to other node using multi hop communication. Now days mobile ad-hoc networks are being used for different applications and traffics, so it require quality of service (QoS) support in routing protocol. In this paper, a modified QoS routing protocol using directional antenna has been proposed. High and normal priority can be assigned based on type of traffic. All the nodes in the path used by high priority flow are reserved as high priority flow for that flow and normal priority flow will avoid the paths used by high priority flows. If no disjoint paths are available, there may be two possibilities: Normal priority flows are blocked and other is, normal priority flows are allow using the coupled path with high priority flow. Blocking the normal priority flow, QoS routing protocol improves the performance of high priority flow. This concept may be use in emergency communication. Simulation results show that by assigning the priorities to flows, performance of high priority flows are improved and it will further improved by blocking the normal priority flow.展开更多
Because the node of vehicular ad-hoc networks has the characteristics of high mobility and encounter temporary, a trust management between the nodes in the routing process becomes more difficult. To solve this problem...Because the node of vehicular ad-hoc networks has the characteristics of high mobility and encounter temporary, a trust management between the nodes in the routing process becomes more difficult. To solve this problem, this paper proposes a new trusted routing protocol in VANET based on GeoDTN+Nav by using trust management model of Bayesian and the three opportunistic routing forwarding models, which includes four steps of the routing initialization, the routing discovery, the trusted routing establishment and the routing deletion. The proposed protocol not only improves the security of routing, but also has the lower time complexity. Besides, experimental results and analysis show that the protocol has achieved good performance in the removal ratio of malicious nodes, correct reception ratio of packet and the message payload.展开更多
Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even wh...Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even when a proper node is selected as the for- warding node. In this paper, we propose a loss-tolerant scheme for unicast routing protocols in VANETs. The proposed scheme employs multiple forwarding nodes to improve the packet reception ratio at the forwarding nodes. The scheme uses network coding to reduce the number of required transmissions, resulting in a significant improvement in end-to-end packet delivery ratio with low message overhead. The effectiveness of the proposed scheme is evaluated by using both theoretical analysis and computer sim-展开更多
After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. Wit...After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. With respect to the specific characteristics of VANETs, the proposed routing protocol adopts a dynamic topology establishment and time-varying control message sending mechanism. A direction-based forwarding strategy and a specific warning solution enhance the routing performance in ARPP. Simulation results show that the ARPP protocol outperforms the classic AODV in urban vehicle environment.展开更多
Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h...Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.展开更多
Over the past few years, numerous traffic safety applications have been developed using vehicular ad hoc networks(VANETs). These applications represent public interest and require network-wide dissemination techniques...Over the past few years, numerous traffic safety applications have been developed using vehicular ad hoc networks(VANETs). These applications represent public interest and require network-wide dissemination techniques. On the other hand, certain non-safety applications do not require network-wide dissemination techniques.Such applications can be characterized by their individual interest between two vehicles that are geographically apart. In the existing literature, several proposals of unicast protocols exist that can be used for these non-safety applications. Among the proposals, unicast protocols for city scenarios are considered to be most challenging.This implies that in city scenarios unicast protocols show minimal persistence towards highly dynamic vehicular characteristics, including mobility, road structure, and physical environment. Unlike other studies, this review is motivated by the diversity of vehicular characteristics and difficulty of unicast protocol adaption in city scenarios.The review starts with the categorization of unicast protocols for city scenarios according to their requirement for a predefined unicast path. Then, properties of typical city roads are discussed, which helps to explore limitations in efficient unicast communication. Through an exhaustive literature review, we propose a thematic taxonomy based on different aspects of unicast protocol operation. It is followed by a review of selected unicast protocols for city scenarios that reveal their fundamental characteristics. Several significant parameters from the taxonomy are used to qualitatively compare the reviewed protocols. Qualitative comparison also includes critical investigation of distinct approaches taken by researchers in experimental protocol evaluation. As an outcome of this review, we point out open research issues in unicast routing.展开更多
Purpose-The purpose of this paper is to introduce a new data dissemination model in order to improve the performance of transmission in VANET.It proposes a protocol named Epidemic and Transmission-Segmentbased Geograp...Purpose-The purpose of this paper is to introduce a new data dissemination model in order to improve the performance of transmission in VANET.It proposes a protocol named Epidemic and Transmission-Segmentbased Geographic Routing(ETSGR)and outlining the issues due to high mobility of nodes and uncertain physical topologies in the network.The proposed ETSGR is mainly used to analyze the vehicle state,direction,distance,traffic density and link quality of the network.Design/methodology/approach-This research work based on ETSGR protocol mainly uses epidemic algorithmin order to find the vehicle state based on susceptible,infected and recovered(SIR)model.Furthermore,the vehicle position and finding the head node in the network is utilized using the transmission segment protocol based on geographic routing and analyses each node to formthe segments and find the destination to transmit the data in timely manner.Findings-The paper provides the enhancement of the performance based on some metrics such as end-to-end delaythat obtained 0.62%,data throughput as 32.3%,packetdelivery ratio as 67%and one-hop communicationas 13%.The proposed ETSGR protocolanalyzes the state of the vehiclecorrectly and each node segmented to transmit the data with the timely manner and obtaining reliable performanceeven with highmobility of nodes in the network.Research limitations/implications-The proposed ETSGR protocol may have some limitation when considering the timing which should improve even in increasing many number of vehicles and different road segments.Practical implications-This paper includes some suggestions for the practical deployment of the approach in which a real-time traffic analysis can be evaluated for taking prior actions during an emergency situation and proper dissemination of data in timely manner can help utilize the guidance of proper planning of roads.Originality/value-This research fulfills an enhanced protocol to improve the performance of data dissemination.展开更多
Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effect...Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.展开更多
The paper presents a new protocol called Link Stability and Transmission Delay Aware(LSTDA)for Flying Adhoc Network(FANET)with a focus on network corridors(NC).FANET consists of Unmanned Aerial Vehicles(UAVs)that face...The paper presents a new protocol called Link Stability and Transmission Delay Aware(LSTDA)for Flying Adhoc Network(FANET)with a focus on network corridors(NC).FANET consists of Unmanned Aerial Vehicles(UAVs)that face challenges in avoiding transmission loss and delay while ensuring stable communication.The proposed protocol introduces a novel link stability with network corridors priority node selection to check and ensure fair communication in the entire network.The protocol uses a Red-Black(R-B)tree to achieve maximum channel utilization and an advanced relay approach.The paper evaluates LSTDA in terms of End-to-End Delay(E2ED),Packet Delivery Ratio(PDR),Network Lifetime(NLT),and Transmission Loss(TL),and compares it with existing methods such as Link Stability Estimation-based Routing(LEPR),Distributed Priority Tree-based Routing(DPTR),and Delay and Link Stability Aware(DLSA)using MATLAB simulations.The results show that LSTDA outperforms the other protocols,with lower average delay,higher average PDR,longer average NLT,and comparable average TL.展开更多
A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a ra...A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.展开更多
The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data ro...The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.展开更多
Vehicular ad-hoc networks(VANETs)play an essential role in enhancing transport infrastructure by making vehicles intelligent and proficient in preventing traffic fatalities.Direction-based greedy protocols pick the ne...Vehicular ad-hoc networks(VANETs)play an essential role in enhancing transport infrastructure by making vehicles intelligent and proficient in preventing traffic fatalities.Direction-based greedy protocols pick the next route vehicle for transmitting emergency messages(EMs)depending upon the present location of adjacent vehicles towards sink vehicles by using an optimal uni-directional road traffic approach.Nevertheless,such protocols suffer performance degradation by ignoring the moving directions of vehicles in bi-directional road traffic where topological changes happen continuously.Due to the high number of vehicles,it is essential to broadcast EMs to all vehicles to prevent traffic delays and collisions.A cluster-based EM transmitting technique is proposed in this paper.For urban VANETs,this paper pioneers the clustering of bi-directional road traffic for robust and efficient routing of EMs.In this regard,this paper introduces a routing protocol,namely,the bi-directional urban routing protocol(BURP).In addition to the paths and relative locations of vehicles,BURP takes account of the distance parameter by using the Hamming distance function to determine the direction ofmotion of vehicles and communicates EMs through the cluster head(CH).Amodified k-medoids algorithm is presented for the clustering of bi-directional road traffic.A median method is presented for selecting CH to ensure the longrunning of a cluster.Simulation results show that BURP provides enhanced throughput,a maximized packet delivery ratio,low energy consumption,and network delay relative to eminent routing protocols.展开更多
A novel weighted cooperative routing algorithm (WCRA) is proposed in this article, which was on the basis of a weighted metric with maximal remaining energy (MRE) of the relays and the maximal received SNR (MRS)...A novel weighted cooperative routing algorithm (WCRA) is proposed in this article, which was on the basis of a weighted metric with maximal remaining energy (MRE) of the relays and the maximal received SNR (MRS) of the nodes. Moreover, a cooperative routing protocol was implemented on the basis of WCRA. Then simulation is done on network simulation (NS-2) platform to compare the performances of MRS, MRE and WCRA with that of noncooperative destination-sequenced destination-sequenced distance-vector (DSDV) protocol. The simulative results show that WCRA obtains a performance tradeoff between MRE and MRS in terms of delivery ratio and network lifetime, which can effectively improve the network lifetime at an acceptable loss of delivery ratio.展开更多
On-demand routing protocols are widely used in mobile Ad-hoc network (MANET). Flooding is an important dissemination scheme in routing discovering of on-demand routing protocol. However, in high-density MANET redund...On-demand routing protocols are widely used in mobile Ad-hoc network (MANET). Flooding is an important dissemination scheme in routing discovering of on-demand routing protocol. However, in high-density MANET redundancy flooding packets lead to dramatic deterioration of the performance which calls broadcast storm problem (BSP). A location-aided probabilistic broadcast (LAPB) algorithm for routing in MANET is proposed to reduce the number of routing packets produced by flooding in this paper. In order to reduce the redundancy packets, only nodes in a specific area have the probability, computed by location information and neighbor knowledge, to propagate the routing packets. Simulation results demonstrate that the LAPB algorithm can reduce the packets and discovery delay (DD) in the routing discovery phase.展开更多
Mobile ad-hoc networks(MANETs)provide highly robust and self-configuring network capacity required in many critical applications,such as battlefields,disaster relief,and wild life tracking.In this paper,we focus on ef...Mobile ad-hoc networks(MANETs)provide highly robust and self-configuring network capacity required in many critical applications,such as battlefields,disaster relief,and wild life tracking.In this paper,we focus on efficient message forwarding in sparse MANETs,which suffers from frequent and long-duration partitions.Asynchronous contacts become the basic way of communication in such kind of network instead of data links in traditional ad-hoc networks.Current approaches are primarily based on estimation with pure probability calculation.Stochastic forwarding decisions from statistic results can lead to disastrous routing performance when wrong choices are made.This paper introduces a new routing protocol,based on contact modeling and contact prediction,to address the problem.Our contact model focuses on the periodic contact pattern of nodes with actual inter-contact time involved,in order to get an accurate realization of network cooperation and connectivity status.The corresponding contact prediction algorithm makes use of both statistic and time sequence information of contacts and allows choosing the relay that has the earliest contact to the destination,which results in low average latency.Simulation is used to compare the routing performance of our algorithm with three other categories of forwarding algorithm proposed already.The results demonstrate that our scheme is more efficient in both data delivery and energy consumption than previously proposed schemes.展开更多
基金Sponsored by the National Science and Technology Major Project(Grant No. 2010ZX03005-003)
文摘Due to highly dynamic topology caused by fast moving nodes the Vehicular ad-hoc network (VANET) results in the existence of transient communication links, which degrade the performance of developed protocols. Established routes frequently become stale, and existing communication flows are interrupted, incurring delay and additional overhead. In this paper we propose a novel hybrid routing protocol, which is the combined between of the table-driven routing and on-demand routing in VANET. It makes fast convergence in routing process, minimal drop links, making more reliable links, and adaptive with changing of VANET topology. With neighbor table is updated instantaneously, and using strong neighbor for routing process makes route discovery process start whenever it received requirement, and through using route mechanism appropriately it reduces significantly route overhead at each node. The simulation results illustrate the outstanding properties of our proposed routing protocol.
基金Supported by the National Basic Research Program of China (No. 2006CB303000)the National Natural Science Foundation of China (No. 60773091, F020303).
文摘This paper studies a routing protocol used in the application of collecting real-time traffic information using mobile vehicles to monitor traffic status. The biggest challenge of vehicular ad hoe network routing protocol lies in the mismatch between the direction of moving vehicles and routed data. In order to deal with this mismatch, a mesh based routing protocol with a two-tier network architecture is proposed. By using mesh nodes deployed at intersections, data can be routed through an optimized path which can improve the delivery ratio and reduce the consumption of network resources. The simulation uses the mobility model processed from the GPS data of taxis mnning in Shanghai urban areas. The result shows that the proposed protocol outperforms the existing flooding protocol.
文摘Vehicular ad-hoc networks (VANETs) are a significant field in the intelligent transportation system (ITS) for improving road security. The interaction among the vehicles is enclosed under VANETs. Many experiments have been performed in the region of VANET improvement. A familiar challenge that occurs is obtaining various constrained quality of service (QoS) metrics. For resolving this issue, this study obtains a cost design for the vehicle routing issue by focusing on the QoS metrics such as collision, travel cost, awareness, and congestion. The awareness of QoS is fuzzified into a price design that comprises the entire cost of routing. As the genetic algorithm (GA) endures from the most significant challenges such as complexity, unassisted issues in mutation, detecting slow convergence, global maxima, multifaceted features under genetic coding, and better fitting, the currently established lion algorithm (LA) is employed. The computation is analyzed by deploying three well-known studies such as cost analysis, convergence analysis, and complexity investigations. A numerical analysis with quantitative outcome has also been studied based on the obtained correlation analysis among various cost functions. It is found that LA performs better than GA with a reduction in complexity and routing cost.
文摘A wireless ad-hoc network is a self-organized wireless network without fixed or backbone infrastructure. All nodes have routing capability and use peer-to-peer packet transmission or forward packets to other node using multi hop communication. Now days mobile ad-hoc networks are being used for different applications and traffics, so it require quality of service (QoS) support in routing protocol. In this paper, a modified QoS routing protocol using directional antenna has been proposed. High and normal priority can be assigned based on type of traffic. All the nodes in the path used by high priority flow are reserved as high priority flow for that flow and normal priority flow will avoid the paths used by high priority flows. If no disjoint paths are available, there may be two possibilities: Normal priority flows are blocked and other is, normal priority flows are allow using the coupled path with high priority flow. Blocking the normal priority flow, QoS routing protocol improves the performance of high priority flow. This concept may be use in emergency communication. Simulation results show that by assigning the priorities to flows, performance of high priority flows are improved and it will further improved by blocking the normal priority flow.
文摘Because the node of vehicular ad-hoc networks has the characteristics of high mobility and encounter temporary, a trust management between the nodes in the routing process becomes more difficult. To solve this problem, this paper proposes a new trusted routing protocol in VANET based on GeoDTN+Nav by using trust management model of Bayesian and the three opportunistic routing forwarding models, which includes four steps of the routing initialization, the routing discovery, the trusted routing establishment and the routing deletion. The proposed protocol not only improves the security of routing, but also has the lower time complexity. Besides, experimental results and analysis show that the protocol has achieved good performance in the removal ratio of malicious nodes, correct reception ratio of packet and the message payload.
基金supported in part by JSPS KAKENHI under Grant Number25730053
文摘Providing efficient packet delivery in vehicular ad hoc networks (VANETs) is particularly challenging due to the vehicle move- ment and lossy wireless channels. A data packet can be lost at a forwarding node even when a proper node is selected as the for- warding node. In this paper, we propose a loss-tolerant scheme for unicast routing protocols in VANETs. The proposed scheme employs multiple forwarding nodes to improve the packet reception ratio at the forwarding nodes. The scheme uses network coding to reduce the number of required transmissions, resulting in a significant improvement in end-to-end packet delivery ratio with low message overhead. The effectiveness of the proposed scheme is evaluated by using both theoretical analysis and computer sim-
基金Supported by the National Natural Science Foundation of China (No.61070182, No. 60873192, No. 61170225)
文摘After presenting weaknesses of several classic routing protocols applied in vehicular ad hoc networks (VANETs) by a qualitative comparison, this paper proposes a novel self-adaptive routing protocol, named ARPP. With respect to the specific characteristics of VANETs, the proposed routing protocol adopts a dynamic topology establishment and time-varying control message sending mechanism. A direction-based forwarding strategy and a specific warning solution enhance the routing performance in ARPP. Simulation results show that the ARPP protocol outperforms the classic AODV in urban vehicle environment.
文摘Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency.
基金Project supported by the High Impact Research,University of Malaya and Ministry of Higher Education of Malaysia(No.UM.C/HIR/MOHE/FCSIT/09)
文摘Over the past few years, numerous traffic safety applications have been developed using vehicular ad hoc networks(VANETs). These applications represent public interest and require network-wide dissemination techniques. On the other hand, certain non-safety applications do not require network-wide dissemination techniques.Such applications can be characterized by their individual interest between two vehicles that are geographically apart. In the existing literature, several proposals of unicast protocols exist that can be used for these non-safety applications. Among the proposals, unicast protocols for city scenarios are considered to be most challenging.This implies that in city scenarios unicast protocols show minimal persistence towards highly dynamic vehicular characteristics, including mobility, road structure, and physical environment. Unlike other studies, this review is motivated by the diversity of vehicular characteristics and difficulty of unicast protocol adaption in city scenarios.The review starts with the categorization of unicast protocols for city scenarios according to their requirement for a predefined unicast path. Then, properties of typical city roads are discussed, which helps to explore limitations in efficient unicast communication. Through an exhaustive literature review, we propose a thematic taxonomy based on different aspects of unicast protocol operation. It is followed by a review of selected unicast protocols for city scenarios that reveal their fundamental characteristics. Several significant parameters from the taxonomy are used to qualitatively compare the reviewed protocols. Qualitative comparison also includes critical investigation of distinct approaches taken by researchers in experimental protocol evaluation. As an outcome of this review, we point out open research issues in unicast routing.
文摘Purpose-The purpose of this paper is to introduce a new data dissemination model in order to improve the performance of transmission in VANET.It proposes a protocol named Epidemic and Transmission-Segmentbased Geographic Routing(ETSGR)and outlining the issues due to high mobility of nodes and uncertain physical topologies in the network.The proposed ETSGR is mainly used to analyze the vehicle state,direction,distance,traffic density and link quality of the network.Design/methodology/approach-This research work based on ETSGR protocol mainly uses epidemic algorithmin order to find the vehicle state based on susceptible,infected and recovered(SIR)model.Furthermore,the vehicle position and finding the head node in the network is utilized using the transmission segment protocol based on geographic routing and analyses each node to formthe segments and find the destination to transmit the data in timely manner.Findings-The paper provides the enhancement of the performance based on some metrics such as end-to-end delaythat obtained 0.62%,data throughput as 32.3%,packetdelivery ratio as 67%and one-hop communicationas 13%.The proposed ETSGR protocolanalyzes the state of the vehiclecorrectly and each node segmented to transmit the data with the timely manner and obtaining reliable performanceeven with highmobility of nodes in the network.Research limitations/implications-The proposed ETSGR protocol may have some limitation when considering the timing which should improve even in increasing many number of vehicles and different road segments.Practical implications-This paper includes some suggestions for the practical deployment of the approach in which a real-time traffic analysis can be evaluated for taking prior actions during an emergency situation and proper dissemination of data in timely manner can help utilize the guidance of proper planning of roads.Originality/value-This research fulfills an enhanced protocol to improve the performance of data dissemination.
文摘Rapid development in Information Technology(IT)has allowed several novel application regions like large outdoor vehicular networks for Vehicle-to-Vehicle(V2V)transmission.Vehicular networks give a safe and more effective driving experience by presenting time-sensitive and location-aware data.The communication occurs directly between V2V and Base Station(BS)units such as the Road Side Unit(RSU),named as a Vehicle to Infrastructure(V2I).However,the frequent topology alterations in VANETs generate several problems with data transmission as the vehicle velocity differs with time.Therefore,the scheme of an effectual routing protocol for reliable and stable communications is significant.Current research demonstrates that clustering is an intelligent method for effectual routing in a mobile environment.Therefore,this article presents a Falcon Optimization Algorithm-based Energy Efficient Communication Protocol for Cluster-based Routing(FOA-EECPCR)technique in VANETS.The FOA-EECPCR technique intends to group the vehicles and determine the shortest route in the VANET.To accomplish this,the FOA-EECPCR technique initially clusters the vehicles using FOA with fitness functions comprising energy,distance,and trust level.For the routing process,the Sparrow Search Algorithm(SSA)is derived with a fitness function that encompasses two variables,namely,energy and distance.A series of experiments have been conducted to exhibit the enhanced performance of the FOA-EECPCR method.The experimental outcomes demonstrate the enhanced performance of the FOA-EECPCR approach over other current methods.
基金supported in part by the Office of Research and Sponsored Programs,Kean University,the RIF Activity Code 23009 of Zayed University,UAE,and the National Natural Science Foundation of China under Grant 62172366.
文摘The paper presents a new protocol called Link Stability and Transmission Delay Aware(LSTDA)for Flying Adhoc Network(FANET)with a focus on network corridors(NC).FANET consists of Unmanned Aerial Vehicles(UAVs)that face challenges in avoiding transmission loss and delay while ensuring stable communication.The proposed protocol introduces a novel link stability with network corridors priority node selection to check and ensure fair communication in the entire network.The protocol uses a Red-Black(R-B)tree to achieve maximum channel utilization and an advanced relay approach.The paper evaluates LSTDA in terms of End-to-End Delay(E2ED),Packet Delivery Ratio(PDR),Network Lifetime(NLT),and Transmission Loss(TL),and compares it with existing methods such as Link Stability Estimation-based Routing(LEPR),Distributed Priority Tree-based Routing(DPTR),and Delay and Link Stability Aware(DLSA)using MATLAB simulations.The results show that LSTDA outperforms the other protocols,with lower average delay,higher average PDR,longer average NLT,and comparable average TL.
文摘A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.
基金Shanghai Summit Discipline in Design,ChinaSpecial Project Funding for the Shanghai Municipal Commission of Economy and Information Civil-Military Inosculation Project,China(No.JMRH-2018-1042)。
文摘The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.
文摘Vehicular ad-hoc networks(VANETs)play an essential role in enhancing transport infrastructure by making vehicles intelligent and proficient in preventing traffic fatalities.Direction-based greedy protocols pick the next route vehicle for transmitting emergency messages(EMs)depending upon the present location of adjacent vehicles towards sink vehicles by using an optimal uni-directional road traffic approach.Nevertheless,such protocols suffer performance degradation by ignoring the moving directions of vehicles in bi-directional road traffic where topological changes happen continuously.Due to the high number of vehicles,it is essential to broadcast EMs to all vehicles to prevent traffic delays and collisions.A cluster-based EM transmitting technique is proposed in this paper.For urban VANETs,this paper pioneers the clustering of bi-directional road traffic for robust and efficient routing of EMs.In this regard,this paper introduces a routing protocol,namely,the bi-directional urban routing protocol(BURP).In addition to the paths and relative locations of vehicles,BURP takes account of the distance parameter by using the Hamming distance function to determine the direction ofmotion of vehicles and communicates EMs through the cluster head(CH).Amodified k-medoids algorithm is presented for the clustering of bi-directional road traffic.A median method is presented for selecting CH to ensure the longrunning of a cluster.Simulation results show that BURP provides enhanced throughput,a maximized packet delivery ratio,low energy consumption,and network delay relative to eminent routing protocols.
文摘A novel weighted cooperative routing algorithm (WCRA) is proposed in this article, which was on the basis of a weighted metric with maximal remaining energy (MRE) of the relays and the maximal received SNR (MRS) of the nodes. Moreover, a cooperative routing protocol was implemented on the basis of WCRA. Then simulation is done on network simulation (NS-2) platform to compare the performances of MRS, MRE and WCRA with that of noncooperative destination-sequenced destination-sequenced distance-vector (DSDV) protocol. The simulative results show that WCRA obtains a performance tradeoff between MRE and MRS in terms of delivery ratio and network lifetime, which can effectively improve the network lifetime at an acceptable loss of delivery ratio.
基金supported by the National Natural Science Foundation of China (61272450,61662013,U1501252)the Guangxi Natural Science Foundation (2014GXNSFDA118036)+1 种基金the High Level of Innovation Team of Colleges and Universities in GuangxiOutstanding Scholars Program Funding
文摘On-demand routing protocols are widely used in mobile Ad-hoc network (MANET). Flooding is an important dissemination scheme in routing discovering of on-demand routing protocol. However, in high-density MANET redundancy flooding packets lead to dramatic deterioration of the performance which calls broadcast storm problem (BSP). A location-aided probabilistic broadcast (LAPB) algorithm for routing in MANET is proposed to reduce the number of routing packets produced by flooding in this paper. In order to reduce the redundancy packets, only nodes in a specific area have the probability, computed by location information and neighbor knowledge, to propagate the routing packets. Simulation results demonstrate that the LAPB algorithm can reduce the packets and discovery delay (DD) in the routing discovery phase.
文摘Mobile ad-hoc networks(MANETs)provide highly robust and self-configuring network capacity required in many critical applications,such as battlefields,disaster relief,and wild life tracking.In this paper,we focus on efficient message forwarding in sparse MANETs,which suffers from frequent and long-duration partitions.Asynchronous contacts become the basic way of communication in such kind of network instead of data links in traditional ad-hoc networks.Current approaches are primarily based on estimation with pure probability calculation.Stochastic forwarding decisions from statistic results can lead to disastrous routing performance when wrong choices are made.This paper introduces a new routing protocol,based on contact modeling and contact prediction,to address the problem.Our contact model focuses on the periodic contact pattern of nodes with actual inter-contact time involved,in order to get an accurate realization of network cooperation and connectivity status.The corresponding contact prediction algorithm makes use of both statistic and time sequence information of contacts and allows choosing the relay that has the earliest contact to the destination,which results in low average latency.Simulation is used to compare the routing performance of our algorithm with three other categories of forwarding algorithm proposed already.The results demonstrate that our scheme is more efficient in both data delivery and energy consumption than previously proposed schemes.