期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Kinematic Thermal Model for Descending Slabs with Velocity Boundary Layers:A Case Study for the Tonga Subducting Slab 被引量:2
1
作者 ZHANG Keliang WEI Dongping 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第1期211-222,共12页
For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma... For the purpose of investigating the influence of metastable olivine(MO) phase transformations on both deep seismicity and stagnation of slabs,we constructed a 2-dimensional finite element thermal model for a 120 Ma-old 50°dipping oceanic lithosphere descending at 10 cm/yr with velocity boundary layers,which would mitigate the interference of constant velocity field for the slab. The resulting temperatures show that most of intermediate and deep earthquakes occurring within the Tonga slab are occurring inside the 800℃and 1200℃isotherm,respectively.The elevation of olivine transformation near~410 km and respective persistence of metastable olivine and spinel within the transition zone and beneath 660 km would thus result in bimodal positive,zonal,negative density anomalies,respectively.These results together with the resulting pressure anomalies may reflect the stress pattern of the Tonga slab:(i) slab pull force exerts above a depth of~230 km;(ii) MO existence changes the buoyancy force within the transition zone and facilitates slab stagnation at a depth of 660 km;(iii) as the subducting materials accumulated over 660 km,deepest earthquakes occur due to MO transformation;(iv) a flattened‘slab’ may penetrate into the lower mantle due to the density increment of Sp transformation. 展开更多
关键词 kinematic thermal model subduction zone velocity boundary layer metastable olivine double seismic zone finite element method
下载PDF
Investigation into gas lubrication performance of porous gas bearing considering velocity slip boundary condition 被引量:1
2
作者 Xiangbo ZHANG Shuiting DING +5 位作者 Farong DU Fenzhu JI Zheng XU Jiang LIU Qi ZHANG Yu ZHOU 《Friction》 SCIE EI CAS CSCD 2022年第6期891-910,共20页
Porous gas bearings(PGBs)have a proactive application in aerospace and turbomachinery.This study investigates the gas lubrication performance of a PGB with the condition of velocity slip boundary(VSB)owing to the high... Porous gas bearings(PGBs)have a proactive application in aerospace and turbomachinery.This study investigates the gas lubrication performance of a PGB with the condition of velocity slip boundary(VSB)owing to the high Knudsen number in the gas film.The Darcy-Forchheimer laws and modified Navier-Stokes equations were adopted to describe the gas flow in the porous layer and gas film region,respectively.An improved bearing experimental platform was established to verify the accuracy of the derived theory and the reliability of the numerical analysis.The effects of various parameters on the pressure distribution,flow cycle,load capacity,mass flow rate,and velocity profile are demonstrated and discussed.The results show that the gas can flow in both directions,from the porous layer to the gas film region,or in reverse.The load capacity of the PGB increases with an increase in speed and inlet pressure and decreases with an increase in permeability.The mass flow rate increases as the inlet pressure and permeability increase.Furthermore,the simulation results using VSB are in agreement with the experimental results,with an average error of 3.4%,which indicates that the model using VSB achieves a high accuracy.The simulation results ignoring the VSB overrate the load capacity by 16.42%and undervalue the mass flow rate by 11.29%.This study may aid in understanding the gas lubrication mechanism in PGBs and the development of novel gas lubricants. 展开更多
关键词 porous gas bearing(PGB) velocity slip boundary(VSB) numerical simulation gas lubrication flow characteristics
原文传递
Load and velocity boundaries of oil-based superlubricity using 1,3-diketone
3
作者 Yuyang YUAN Tobias AMANN +4 位作者 Yuwen XU Yan ZHANG Jingfu CHEN Chenqing YUAN Ke LI 《Friction》 SCIE EI CAS CSCD 2023年第5期704-715,共12页
The clarification of the critical operating conditions and the failure mechanism of superlubricity systems is of great significance for seeking appropriate applications in industry.In this work,the superlubricity regi... The clarification of the critical operating conditions and the failure mechanism of superlubricity systems is of great significance for seeking appropriate applications in industry.In this work,the superlubricity region of 1,3-diketone oil EPND(1-(4-ethyl phenyl)nonane-1,3-dione)on steel surfaces was identified by performing a series of ball-on-disk rotation friction tests under various normal loads(3.5–64 N)and sliding velocities(100–600 mm/s).The result shows that beyond certain loads or velocities superlubricity failed to be reached due to the following negative effects:(1)Under low load(≤3.5 N),insufficient running-in could not ensure good asperity level conformity between the upper and lower surfaces;(2)the high load(≥64 N)produced excessive wear and big debris;(3)at low velocity(≤100 mm/s),the weak hydrodynamic effect and the generated debris deteriorated the lubrication performance;(4)at high velocity(≥500 mm/s),oil migration occurred and resulted in oil starvation.In order to expand the load and velocity boundaries of the superlubricity region,an optimized running-in method was proposed to avoid the above negative effects.By initially operating a running-in process under a suitable combination of load and velocity(e.g.16 N and 300 mm/s)and then switching to the target certain higher or lower load/velocity(e.g.100 N),the superlubricity region could break through its original boundaries.The result of this work suggests that oil-based superlubricity of 1,3-diketone is a promising solution to friction reduction under suitable operating conditions especially using a well-designed running-in strategy. 展开更多
关键词 macroscopic superlubricity 1 3-diketone oil running-in process load and velocity boundaries
原文传递
Validated scale-up procedure to predict blockage condition for fluidized dense-phase pneumatic conveying systems 被引量:2
4
作者 G.Setia S.S.Mallick +1 位作者 P.W.Wypych Renhu Pan 《Particuology》 SCIE EI CAS CSCD 2013年第6期657-663,共7页
This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation o... This paper presents results of an ongoing investigation into modelling fluidized dense-phase pneumatic conveying of powders. For the reliable design of dense-phase pneumatic conveying systems, an accurate estimation of the blockage boundary condition or the minimum transport velocity requirement is of sig- nificant importance. The existing empirical models for fine powder conveying in fluidized dense-phase mode are either based on only a particular pipeline and product or have not been tested for their accuracy under a wide range of scale-up conditions. In this paper, a validated test design procedure has been devel- oped to accurately scale-up the blockage boundary with the help of a modelling format that employs solids loading ratio and Froude number at pipe inlet conditions using conveying data of two different samples of fly ash, electro-static precipitation (ESP) dust and cement (particle densities: 2197-3637 kgJm3; loose poured bulk densities: 634-1070kg/m3; median size: 7-30 l^m). The developed models (in power func- tion format) have been used to predict the blockage boundary for larger diameter and longer pipelines (e.g. models based on 69 mm I.D. ~ 168 m long pipe have been scaled up to 105 mm I.D. and 554 m length). The predicted blockage boundaries for the scale-up conditions were found to provide better accuracy compared to the existing models. 展开更多
关键词 Fluidized dense-phase Pneumatic conveying Blockage boundary Minimum conveying velocity Scale up
原文传递
Analysis of shock wave reflection from fixed and moving boundaries using a stabilized particle method
5
作者 Hassan Ostad Soheil Mohammadi 《Particuology》 SCIE EI CAS CSCD 2009年第5期373-383,共11页
In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid bounda... In the present paper, the efficiency of an enhanced formulation of the stabilized corrective smoothed particle method (CSPM) for simulation of shock wave propagation and reflection from fixed and moving solid boundaries in compressible fluids is investigated. The Lagrangian nature and its accuracy for imposing the boundary conditions are the two main reasons for adoption of CSPM. The governing equations are further modified for imposition of moving solid boundary conditions. In addition to the traditional artificial viscosity, which can remove numerically induced abnormal jumps in the field values, a velocity field smoothing technique is introduced as an efficient method for stabilizing the solution. The method has been implemented for one- and two-dimensional shock wave propagation and reflection from fixed and moving boundaries and the results have been compared with other available solutions. The method has also been adopted for simulation of shock wave propagation and reflection from infinite and finite solid boundaries. 展开更多
关键词 CSPM Meshfree particle method Shock wave propagation and reflection Moving boundaries Compressible fluids velocity field smoothing stabilization
原文传递
Influence of the connecting condition on the dynamic buckling of longitudinal impact for an elastic rod
6
作者 Xiaojuan Jiao Jianmin Ma 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第3期291-298,共8页
The stress wave propagation law and dynamic buckling critical velocity are formulated and solved by considering a general axial connecting boundary for a slender elastic straight rod impacted by a rigid body. The infl... The stress wave propagation law and dynamic buckling critical velocity are formulated and solved by considering a general axial connecting boundary for a slender elastic straight rod impacted by a rigid body. The influence of connecting stiffness on the critical velocity is investigated with varied impactor mass and buckling time. The influences of rod length and rod mass on the critical velocity are also discussed. It is found that greater connecting stiffness leads to larger stress amplitude, and further results in lower critical velocity. It is particularly noteworthy that when the connecting stiffness is less than a certain value, dynamic buckling only occurs before stress wave reflects off the connecting end. It is also shown that longer rod with larger slenderness ratio is easier to buckle, and the critical velocity for a larger-mass rod is higher than that for a lighter rod with the same geometry. 展开更多
关键词 Elastic rod Longitudinal impact Connecting boundary Stress wave Dynamic buckling Critical velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部