Non-intrusive characterization of the singly ionized xenon velocity in Hall thruster plume using laser induced fluorescence(LIF)is critical for constructing a complete picture of plume plasma,deeply understanding the ...Non-intrusive characterization of the singly ionized xenon velocity in Hall thruster plume using laser induced fluorescence(LIF)is critical for constructing a complete picture of plume plasma,deeply understanding the ion dynamics in the plume,and providing validation data for numerical simulation.This work presents LIF measurements of singly ionized xenon axial velocity on a grid ranging from 100 to 300 mm in axial direction and from 0 to 50 mm in radial direction for a600 W Hall thruster operating at the nominal condition of discharge voltage 300 V and discharge current 2 A,the influence of discharge voltage is investigated as well.The ion velocity distribution function(IVDF)results in the far-field plume demonstrate a profile of bimodal IVDFs,especially prominent at radial distances greater than channel inner radius of 22 mm at axial position of 100 mm,which is quite different from that of the near-field plume where bimodal IVDFs occur in the central core region for the same power Hall thruster when compared to previous LIF measurements of BHT-600 by Hargus(2010 J.Propulsion Power 26135).Beyond 100 mm,only single-peak IVDFs are measured.The two-dimensional ion velocity vector field indicates the bimodal axial IVDF is merely a geometry effect for the annular discharge channel in the far-field plume.Results about the IVDF,the most probable velocity and the accelerating potential profile along the centerline all indicate that ions are still accelerating at axial distances greater than 100 mm,and the maximum most probable velocity measured at300 mm downstream of the exit plane is about 19 km s-1.In addition,the most probable velocity of ions along radial direction changes a little except the lower velocity ion populations in the bimodal IVDF cases.The ion temperature at axial distances of 10 and 300 mm oscillates along the radial direction,while the ion temperature first increases,and then decreases for the 200 mm case.Finally,the axial position for the ion peak axial velocity on the thruster centerline is shifted upstream for higher discharge voltages,and the velocity curve is becoming steeper with the discharge voltage before reaching the maximum.This observation can be used as a criterion to optimize the thruster performance.展开更多
This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity dis...This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.展开更多
The high-order compact finite difference technique is introduced to solve the Boltzmann model equation, and the gas-kinetic high-order schemes are developed to simulate the different kinetic model equations such as th...The high-order compact finite difference technique is introduced to solve the Boltzmann model equation, and the gas-kinetic high-order schemes are developed to simulate the different kinetic model equations such as the BGK model, the Shakhov model and the Ellipsoidal Statistical (ES) model in this paper. The methods are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the inner flows of normal shock wave for different Mach numbers, and the two-dimensional flows past a circular cylinder and a NACA 002 airfoil to verify the reliability of the present high-order algorithm and simulate gas transport phenomena covering various flow regimes. The computed results are found in good agreement both with the theoretical prediction from continuum to rarefied gas dynamics, the related DSMC solutions, and with the experimental results. The numerical effect of the schemes with the different precision and the different types of Boltzmann collision models on the computational efficiency and computed results is investigated and analyzed. The numerical experience indicates that an approach developing and applying the gas-kinetic high-order algorithm is feasible for directly solving the Boltzmann model equation.展开更多
This paper develops a high-order accurate gas-kinetic scheme in the framework of the finite volume method for the one-and two-dimensional flow simulations,which is an extension of the third-order accurate gas-kinetic ...This paper develops a high-order accurate gas-kinetic scheme in the framework of the finite volume method for the one-and two-dimensional flow simulations,which is an extension of the third-order accurate gas-kinetic scheme[Q.B.Li,K.Xu,and S.Fu,J.Comput.Phys.,229(2010),6715-6731]and the second-order accurate gas-kinetic scheme[K.Xu,J.Comput.Phys.,171(2001),289-335].It is formed by two parts:quartic polynomial reconstruction of the macroscopic variables and fourth-order accurate flux evolution.The first part reconstructs a piecewise cell-center based quartic polynomial and a cell-vertex based quartic polynomial according to the“initial”cell average approximation of macroscopic variables to recover locally the non-equilibrium and equilibrium single particle velocity distribution functions around the cell interface.It is in view of the fact that all macroscopic variables become moments of a single particle velocity distribution function in the gas-kinetic theory.The generalized moment limiter is employed there to suppress the possible numerical oscillation.In the second part,the macroscopic flux at the cell interface is evolved in fourth-order accuracy by means of the simple particle transport mechanism in the microscopic level,i.e.free transport and the Bhatnagar-Gross-Krook(BGK)collisions.In other words,the fourth-order flux evolution is based on the solution(i.e.the particle velocity distribution function)of the BGK model for the Boltzmann equation.Several 1D and 2D test problems are numerically solved by using the proposed high-order accurate gas-kinetic scheme.By comparing with the exact solutions or the numerical solutions obtained the secondorder or third-order accurate gas-kinetic scheme,the computations demonstrate that our scheme is effective and accurate for simulating invisid and viscous fluid flows,and the accuracy of the high-order GKS depends on the choice of the(numerical)collision time.展开更多
This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retriev...This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M^(1.5),and the relationship between reflectivity and rain intensity was Z = 256I^(1.4).展开更多
基金supported by National Natural Science Foundation of China(No.11805275)Hunan Provincial Natural Science Foundation of China(No.2018JJ3592)。
文摘Non-intrusive characterization of the singly ionized xenon velocity in Hall thruster plume using laser induced fluorescence(LIF)is critical for constructing a complete picture of plume plasma,deeply understanding the ion dynamics in the plume,and providing validation data for numerical simulation.This work presents LIF measurements of singly ionized xenon axial velocity on a grid ranging from 100 to 300 mm in axial direction and from 0 to 50 mm in radial direction for a600 W Hall thruster operating at the nominal condition of discharge voltage 300 V and discharge current 2 A,the influence of discharge voltage is investigated as well.The ion velocity distribution function(IVDF)results in the far-field plume demonstrate a profile of bimodal IVDFs,especially prominent at radial distances greater than channel inner radius of 22 mm at axial position of 100 mm,which is quite different from that of the near-field plume where bimodal IVDFs occur in the central core region for the same power Hall thruster when compared to previous LIF measurements of BHT-600 by Hargus(2010 J.Propulsion Power 26135).Beyond 100 mm,only single-peak IVDFs are measured.The two-dimensional ion velocity vector field indicates the bimodal axial IVDF is merely a geometry effect for the annular discharge channel in the far-field plume.Results about the IVDF,the most probable velocity and the accelerating potential profile along the centerline all indicate that ions are still accelerating at axial distances greater than 100 mm,and the maximum most probable velocity measured at300 mm downstream of the exit plane is about 19 km s-1.In addition,the most probable velocity of ions along radial direction changes a little except the lower velocity ion populations in the bimodal IVDF cases.The ion temperature at axial distances of 10 and 300 mm oscillates along the radial direction,while the ion temperature first increases,and then decreases for the 200 mm case.Finally,the axial position for the ion peak axial velocity on the thruster centerline is shifted upstream for higher discharge voltages,and the velocity curve is becoming steeper with the discharge voltage before reaching the maximum.This observation can be used as a criterion to optimize the thruster performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91016027 and 91130018)
文摘This paper investigates the convergence proof of the Direct Simulation Monte Carlo(DSMC) method and the Gas-Kinetic Unified Algorithm in simulating the Boltzmann equation.It can be shown that the particle velocity distribution function obtained by the DSMC method converges to a modified form of the Boltzmann equation,which is the equation of the gas-kinetic unified algorithm to directly solve the molecular velocity distribution function.Their convergence is derived through mathematical treatment.The collision frequency is presented using various molecular models and the local equilibrium distribution function is obtained by Enskog expansion using the converged equation of the DSMC method.These two expressions agree with those used in the unified algorithm.Numerical validation of the converging consistency between these two approaches is illustrated by simulating the pressure driven Poiseuille flow in the slip transition flow regime and the two-dimensional and three-dimensional flows around a circular cylinder and spherical-cone reentry body covering the whole flow regimes from low speed micro-channel flow to high speed non-equilibrium aerothermodynamics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10621062 and 91016027)
文摘The high-order compact finite difference technique is introduced to solve the Boltzmann model equation, and the gas-kinetic high-order schemes are developed to simulate the different kinetic model equations such as the BGK model, the Shakhov model and the Ellipsoidal Statistical (ES) model in this paper. The methods are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the inner flows of normal shock wave for different Mach numbers, and the two-dimensional flows past a circular cylinder and a NACA 002 airfoil to verify the reliability of the present high-order algorithm and simulate gas transport phenomena covering various flow regimes. The computed results are found in good agreement both with the theoretical prediction from continuum to rarefied gas dynamics, the related DSMC solutions, and with the experimental results. The numerical effect of the schemes with the different precision and the different types of Boltzmann collision models on the computational efficiency and computed results is investigated and analyzed. The numerical experience indicates that an approach developing and applying the gas-kinetic high-order algorithm is feasible for directly solving the Boltzmann model equation.
基金supported by the National Natural Science Foundation of China(grant numbers:10925101 and 91330205).
文摘This paper develops a high-order accurate gas-kinetic scheme in the framework of the finite volume method for the one-and two-dimensional flow simulations,which is an extension of the third-order accurate gas-kinetic scheme[Q.B.Li,K.Xu,and S.Fu,J.Comput.Phys.,229(2010),6715-6731]and the second-order accurate gas-kinetic scheme[K.Xu,J.Comput.Phys.,171(2001),289-335].It is formed by two parts:quartic polynomial reconstruction of the macroscopic variables and fourth-order accurate flux evolution.The first part reconstructs a piecewise cell-center based quartic polynomial and a cell-vertex based quartic polynomial according to the“initial”cell average approximation of macroscopic variables to recover locally the non-equilibrium and equilibrium single particle velocity distribution functions around the cell interface.It is in view of the fact that all macroscopic variables become moments of a single particle velocity distribution function in the gas-kinetic theory.The generalized moment limiter is employed there to suppress the possible numerical oscillation.In the second part,the macroscopic flux at the cell interface is evolved in fourth-order accuracy by means of the simple particle transport mechanism in the microscopic level,i.e.free transport and the Bhatnagar-Gross-Krook(BGK)collisions.In other words,the fourth-order flux evolution is based on the solution(i.e.the particle velocity distribution function)of the BGK model for the Boltzmann equation.Several 1D and 2D test problems are numerically solved by using the proposed high-order accurate gas-kinetic scheme.By comparing with the exact solutions or the numerical solutions obtained the secondorder or third-order accurate gas-kinetic scheme,the computations demonstrate that our scheme is effective and accurate for simulating invisid and viscous fluid flows,and the accuracy of the high-order GKS depends on the choice of the(numerical)collision time.
基金Supported by the National Natural Science Foundation of China(41075023)China Meteorological Administration Special Public Welfare Research Fund(GYHY200906039 and GYHY201206042)State Key Laboratory of Severe Weather ResearchFund
文摘This paper investigates spatial and temporal distributions of the microphysical properties of precipitating stratiform clouds based on Doppler spectra of rain particles observed by an L-band profiler radar.The retrieval of raindrop size distributions(RSDs) is accomplished through eliminating vertical air motion and isolating the terminal fall velocity of raindrops in the observed Doppler velocity spectrum.The microphysical properties of raindrops in a broad stratiform region with weak convective cells are studied using data collected from a 1320-MHz wind profiler radar in Huayin,Shaanxi Province on 14 May 2009.RSDs and gamma function parameters are retrieved at altitudes between 700 and 3000 m above the surface,below a melting layer.It is found that the altitude of the maximum number of raindrops was closely related to the surface rain rate.The maximum number of large drops was observed at lower altitudes earlier in the precipitation event but at higher altitudes in later periods,suggesting decreases in the numbers of large and medium size raindrops.These decreases may have been caused by the breakup of larger drops and evaporation of smaller drops as they fell.The number of medium size drops decreased with increasing altitude.The relationship between reflectivity and liquid water content during this precipitation event was Z = 1.69×10~4M^(1.5),and the relationship between reflectivity and rain intensity was Z = 256I^(1.4).