An improved algorithm for velocity field of general configurations ispresentd for low-order panel method based on the internal Dirichlet boundary condi-tion. A direct calculating method for the velocity distribution b...An improved algorithm for velocity field of general configurations ispresentd for low-order panel method based on the internal Dirichlet boundary condi-tion. A direct calculating method for the velocity distribution by means of a limit pro-cess combining with analytic evaluation of higher-order singular integrals instead of theconventional method of doublet strength gradient is devised in order to avoid the diffi-culty of edge extrapolation of doublet strength. The problem of substantialunderpredictions of the induced drag coefficient obtained from the VSAERO analysisdisappears for the present improved algorithm. Illustrative calculations for several testcases such as swept back wing, swept forward wing and wing-body combination showthat the accuracy of results may be improved and is competitive with high-order panelmethod. In addition, the present direct integral method can be used to evaluate the ve-locity distribution for external flow field correctly, where the method of gradient cannot be used at all.展开更多
In most of partially averaged Navier-Stokes(PANS)methods,the Reynolds stress is solved by a linear hypothesis isotropic model.They could not capture all kinds of vortexes in tubomachineries.In this paper,a PANS mode...In most of partially averaged Navier-Stokes(PANS)methods,the Reynolds stress is solved by a linear hypothesis isotropic model.They could not capture all kinds of vortexes in tubomachineries.In this paper,a PANS model is modified from the RNG k-?turbulence model and is used to investigate the influence of the nonlinear shear stress on the simulation of the high pressure gradient flows and the large curvature flows.Comparisons are made between the result obtained by using the PANS model modified from the RNG k-?model and that obtained by using the nonlinear PANS methods.The flow past a curved rectangular duct is calculated by using the PANS methods.The obtained nonlinear shear stress agrees well with the experimental results,especially in the high pressure gradient region.The calculation results show that the nonlinear PANS methods are more reliable than the linear PANS methods for the high pressure gradient flows,the large curvature flows,and they can be used to capture complex vortexes in a turbomachinary.展开更多
文摘An improved algorithm for velocity field of general configurations ispresentd for low-order panel method based on the internal Dirichlet boundary condi-tion. A direct calculating method for the velocity distribution by means of a limit pro-cess combining with analytic evaluation of higher-order singular integrals instead of theconventional method of doublet strength gradient is devised in order to avoid the diffi-culty of edge extrapolation of doublet strength. The problem of substantialunderpredictions of the induced drag coefficient obtained from the VSAERO analysisdisappears for the present improved algorithm. Illustrative calculations for several testcases such as swept back wing, swept forward wing and wing-body combination showthat the accuracy of results may be improved and is competitive with high-order panelmethod. In addition, the present direct integral method can be used to evaluate the ve-locity distribution for external flow field correctly, where the method of gradient cannot be used at all.
基金supported by the National Natural Science Foundation of China(Grant Nos.51406010,51479166)
文摘In most of partially averaged Navier-Stokes(PANS)methods,the Reynolds stress is solved by a linear hypothesis isotropic model.They could not capture all kinds of vortexes in tubomachineries.In this paper,a PANS model is modified from the RNG k-?turbulence model and is used to investigate the influence of the nonlinear shear stress on the simulation of the high pressure gradient flows and the large curvature flows.Comparisons are made between the result obtained by using the PANS model modified from the RNG k-?model and that obtained by using the nonlinear PANS methods.The flow past a curved rectangular duct is calculated by using the PANS methods.The obtained nonlinear shear stress agrees well with the experimental results,especially in the high pressure gradient region.The calculation results show that the nonlinear PANS methods are more reliable than the linear PANS methods for the high pressure gradient flows,the large curvature flows,and they can be used to capture complex vortexes in a turbomachinary.