期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
COMPUTATIONAL FLUID DYNAMICS RESEARCH ON PRESSURE LOSS OF CROSS-FLOW PERFORATED MUFFLER 被引量:15
1
作者 HU Xiaodong ZHOU Yiqi +2 位作者 FANG Jianhua MAN Xiliang ZHAO Zhengxu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第2期88-93,共6页
The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to inv... The pressure loss of cross-flow perforated of physical modeling, simulation and data processing. muffler has been computed with the procedure Three-dimensional computational fluid dynamics (CFD) has been used to investigate the relations of porosities, flow velocity and diameter of the holes with the pressure loss. Accordingly, some preliminary results have been obtained that pressure loss increases with porosity descent as nearly a hyperbolic trend, rising flow velocity of the input makes the pressure loss increasing with parabola trend, diameter of holes affects little about pressure loss of the muffler. Otherwise, the holes on the perforated pipes make the air flow gently and meanly, which decreases the air impact to the wall and pipes in the muffler. A practical perforated muffler is used to illustrate the available of this method for pressure loss computation, and the comparison shows that the computation results with the method of CFD has reference value for muffler design. 展开更多
关键词 Perforated muffler Pressure loss Computational fluid dynamics (CFD) Porosity Flow velocity
下载PDF
Study on detonation characteristic of low energy detonating fuse in bending conditions
2
作者 Mei Qun Zhu Junfeng Li Zuoliang Hou Zhonghua 《Engineering Sciences》 EI 2010年第2期80-82,共3页
Detonation of low energy detonating fuse was studied in numerical simulation and experiments in bending conditions using LS_DYNA3D. The results show that pressure of the explosion and detonation velocity decrease in t... Detonation of low energy detonating fuse was studied in numerical simulation and experiments in bending conditions using LS_DYNA3D. The results show that pressure of the explosion and detonation velocity decrease in the same section areas after bending. In bending conditions, detonation wave was similar to small angle comer diffraction. So the detonation velocity was lower than normal velocity. 展开更多
关键词 low energy detonating fuse detonation in bending conditions loss of detonation velocity numerical simulation
下载PDF
Flow field and pressure loss analysis of junction and its structure optimization of aircraft hydraulic pipe system 被引量:20
3
作者 Li Xin Wang Shaoping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1080-1092,共13页
The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed u... The flow field in junction is complicated due to the ripple property of oil flow velocity and different frequencies of two pumps in aircraft. In this study, the flow fields of T-junction and Y-junction were analyzed using shear stress transport (SST) model in ANSYS/CFX software. The simulation results identified the variation rule of velocity peak in T-junction with different frequencies and phase-differences, meanwhile, the eddy and velocity shock existed in the corner of the T-junction, and the limit working state was obtained. Although the eddy disappeared in Y-junction, the velocity shock and pressure loss were still too big. To address these faults, an arc-junction was designed. Based on the flow fields of arc-junction, the eddy in the junction corner disappeared and the maximum of velocity peak declined compared to T-and Y-junction. Additionally, 8 series of arc-junction with different radiuses were tested to get the variation rule of velocity peak. Through the computation of the pressure loss of three junctions, the arc-junction had a lowest loss value, and its pressure loss reached the minimum value when the curvature radius is 35.42 mm, meanwhile, the velocity shock has decreased in a low phase. 展开更多
关键词 Arc-junction Computational fluid dynam- ics Pipe flow Pressure loss T-junction velocity shock Y-junction
原文传递
Ozone concentrations, flux and potential effect on yield during wheat growth in the NorthwestShandong Plain of China 被引量:12
4
作者 Zhilin Zhu Xiaomin Sun +1 位作者 Fenghua Zhao Franz X.Meixner 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期1-9,共9页
Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3expo... Ozone(O3) concentration and flux(Fo) were measured using the eddy covariance technique over a wheat field in the Northwest-Shandong Plain of China. The O3-induced wheat yield loss was estimated by utilizing O3exposure-response models. The results showed that:(1) During the growing season(7 March to 7 June, 2012), the minimum(16.1 ppb V) and maximum(53.3 ppb V)mean O3 concentrations occurred at approximately 6:30 and 16:00, respectively. The mean and maximum of all measured O3 concentrations were 31.3 and 128.4 ppb V, respectively. The variation of O3 concentration was mainly affected by solar radiation and temperature.(2) The mean diurnal variation of deposition velocity(V d) can be divided into four phases, and the maximum occurred at noon(12:00). Averaged V d during daytime(6:00–18:00) and nighttime(18:00–6:00) were 0.42 and 0.14 cm/sec, respectively. The maximum of measured V d was about1.5 cm/sec. The magnitude of V d was influenced by the wheat growing stage, and its variation was significantly correlated with both global radiation and friction velocity.(3) The maximum mean F o appeared at 14:00, and the maximum measured F o was-33.5 nmol/(m^2·sec). Averaged F o during daytime and nighttime were-6.9 and-1.5 nmol/(m^2·sec), respectively.(4) Using O3 exposure-response functions obtained from the USA, Europe, and China, the O3-induced wheat yield reduction in the district was estimated as 12.9% on average(5.5%–23.3%). Large uncertainties were related to the statistical methods and environmental conditions involved in deriving the exposure-response functions. 展开更多
关键词 Ozone concentration Ozone flux Deposition velocity Eddy covariance Yield loss estimation Cropland ecosystem
原文传递
A simulation study of airborne wear particles from laboratory wheel-rail contacts 被引量:1
5
作者 Hailong Liu Lage Tord Ingemar Jonsson Par Goran Jonsson 《Particuology》 SCIE EI CAS CSCD 2016年第5期31-42,共12页
Laboratory measurements of airborne particles from sliding contacts are often performed using a tri- bometer located in a ventilation chamber. Although knowledge of particle transport behavior inside the chamber is re... Laboratory measurements of airborne particles from sliding contacts are often performed using a tri- bometer located in a ventilation chamber. Although knowledge of particle transport behavior inside the chamber is required because it can influence the analysis of measurements, this knowledge is lacking. A numerical model was built based on the same geometry as a pin-on-disc measurement system to explain particle transport behavior inside the chamber and to determine the deviation between real amounts of generated and measured particles at the outlet. The effect of controlled flow conditions on the airflow pattern and particle transport inside the chamber was studied for different experimental conditions. Cal- culations show that a complex airflow pattern is formed by the spinning disc, and that it differs for each rotational speed. Simulation results reveal that particle transport in the chamber is governed mainly by the airflow pattern. The deposition velocity in the chamber was estimated and the possibility that part of the generated particles would remain in the chamber was studied. This led to an approximate estima- tion of particle loss rate. A comparison between experimental and simulated results with respect to the particle mass flow rate close to the outlet yields a reference factor of 0.7, which provides an indication of the difference between measured and real values. 展开更多
关键词 Airborne particles Particle transport Concentration Particle loss rate Deposition velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部