The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken ...The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.展开更多
Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with sev...Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.展开更多
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I...We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 ...Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature,variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.展开更多
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems ...Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x a)2+(y1)2+(z 1/a)2=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.Th...This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.展开更多
In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variab...In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.展开更多
The collision cross-sections(CCS)measurement using ion mobility spectrometry(IMS)in combination with mass spectrometry(MS)offers a great opportunity to increase confidence in metabolite identification.However,owing to...The collision cross-sections(CCS)measurement using ion mobility spectrometry(IMS)in combination with mass spectrometry(MS)offers a great opportunity to increase confidence in metabolite identification.However,owing to the lack of sensitivity and resolution,IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites(VLMs250 Da).Here,we describe an analytical method using ultrahigh-performance liquid chromatography(UPLC)coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples.The experimental CCS values,along with mass spectral properties,were reported for the 174 metabolites.The experimental data included the mass-to-charge ratio(m/z),retention time(RT),tandem MS(MS/MS)spectra,and CCS values.Among the studied metabolites,263 traveling wave ion mobility spectrometry(TWIMS)-derived CCS values(TWCCSN2)were reported for the first time,and more than 70%of these were CCS values of VLMs.The TWCCSN2 values were highly repeatable,with inter-day variations of<1%relative standard deviation(RSD).The developed method revealed excellent TWCCSN2 accuracy with a CCS difference(DCCS)within±2%of the reported drift tube IMS(DTIMS)and TWIMS CCS values.The complexity of the urine matrix did not affect the precision of the method,as evidenced by DCCS within±1.92%.According to the Metabolomics Standards Initiative,55 urinary metabolites were identified with a confidence level of 1.Among these 55 metabolites,53(96%)were VLMs.The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values,which clearly increased metabolite identification confidence.展开更多
A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A ...A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.展开更多
This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 ...This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.展开更多
The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for ...The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for the demagnetization motor.A demagnetization mathematical model is established to describe a permanent magnet synchronous motor,which took the change of permanent magnet flux linkage parameters as a factor to count the demagnetization error in velocity tracking.The uncertain disturbance estimation model of the control system is built based on ESO,which eliminates the system error by the feedforward current compensation.It is compared with the vector control method in terms of control accuracy.The simulation results show that the current feedforward vector control method based on ESO reduces the velocity tracking error greatly in conditions of motor demagnetization less than 30%.It is effective to improve the operation accuracy of the mobile robot.展开更多
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling s...Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.展开更多
A shear-wave velocity model of the crust and uppermost mantle beneath the SE Tibetan plateau was derived by inverting Rayleigh-wave group-velocity mea- surements of periods between 10 and 70 s. Rayleigh-wave group-vel...A shear-wave velocity model of the crust and uppermost mantle beneath the SE Tibetan plateau was derived by inverting Rayleigh-wave group-velocity mea- surements of periods between 10 and 70 s. Rayleigh-wave group-velocity dispersions along more than 3,000 inter- station paths were measured based on analysis of telese- ismic wavelbrm data recorded by temporary seismic stations. These observations were then utilized to construct 2D group-velocity maps in the period range of 10-70 s. Tile new group-velocity maps have an enhanced resolution compared with previous global and regional group-velocity models in this region because of the denser and more uniform data coverage. The lateral resolution across the region is about 0.5° for the periods used in this study. Local dispersion curves were then inverted for a 3D shear-wave velocity model of the region by applying a linear inversion scheme. Our 3D shear-wave model confirms the presence of low-velocity zones (LVZs) in the crust beneath the northern part of this region. Our irnaging shows that the upper-middle crustal LVZ beneath the Tengchong region is isolated from these LVZs beneath the eastern and northern part of this region. The upper-middle crustal LVZ may be regarded as evidence of a rnagma chamber in the crust beneath the Tengchong Volcanoes. Our model also reveals a slow lithospheric structure beneath Tengchong and a fast shield-like mantle beneath the stable Yangtze block.展开更多
In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ...In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.展开更多
This study utilizes empirical equations to describe the propagation of vibrations induced by blasting, with the goal of predicting the attenuation of Peak Particle Velocity (PPV) at the Yaramoko mine in Bagassi, Burki...This study utilizes empirical equations to describe the propagation of vibrations induced by blasting, with the goal of predicting the attenuation of Peak Particle Velocity (PPV) at the Yaramoko mine in Bagassi, Burkina Faso, a site characterized by granitoid rock. Four empirical PPV prediction equations were employed, so-called Duvall & Fogelson (or the United States Bureau of Mines “USBM”), Langefors and Kihlstrom, Ambressys-Hendron, and the Bureau of Indian Standard. The constant parameters for each of these equations, referred to as site constants, were derived from linear regression curves. The results show that the site constants k, a, and b of 4762, 0.869, and 1.737, respectively, derived from the general prediction equation by Davies, PPV = kQaD−b, based on Duvall & Fogelson, are in good agreement with values of 4690, 0.9, and 1.69, respectively, for similar rock types in Spain. Regarding the impacts of blasting on houses, the findings indicate that houses built from laterite-block bricks in the village of Bagassi are the most vulnerable to vibration waves, followed by those constructed with cinder-block bricks. In contrast, houses made of banco bricks are the most resilient. Additionally, it was determined that during blasting operations, adjusting the blasting parameters to ensure the PPV does not exceed 2 mm/s at the level of nearby dwellings can minimize the appearance of cracks in houses.展开更多
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ...Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.展开更多
基金supported by the Major Projects of National Science and Technology Sub-topics(2011ZX05025-001-05)
文摘The main factors affecting seismic exploration is the propagation velocity of seismic waves in the medium. In the past, during marine seismic data processing, the propagation velocity of sea water was generally taken as a constant 1500 m/s. However, for deep water exploration, the sound velocity varies with the season, time, location, water depth, ocean currents, and etc.. It also results in a layered velocity distribution, so there is a difference of seismic traveltime, ray paths, and amplitude, which affect the migration imaging results if sea water propagation velocity is still taken as constant for the propagation wavefield. In this paper, we will start from an empirical equation of seismic wave velocity in seawater with changes of temperature, salinity, and depth, consider the variation of their values, build a seawater velocity model, and quantitatively analyze the impact of seawater velocity variation on seismic traveltime, ray paths, and amplitude in the seawater velocity model.
基金supported by the National Natural Science Foundation of China(Nos.51527805,11572220 and 41174109)
文摘Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage.This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration(of oil droplets) in oil-water two-phase flow,which makes it difficult to measure water holdup in oil wells.In this study,we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in lowvelocity and high water-cut conditions.First,we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling.Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor.Based on the results,we then investigate the effects of oildroplet diameter and distribution on the ultrasonic field.To further understand the measurement characteristics of the ultrasonic sensor,we perform a flow loop test on vertical upward oilwater two-phase flow and measure the responses of the optimized ultrasonic sensor.The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow(D OS/W flow),but the resolution is favorable for dispersed oil in water flow(D O/W flow) and very fine dispersed oil in water flow(VFD O/W flow).This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
基金State Natural Scientific Foundation (49734150) and National High Performance Computation Foundation.
文摘We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
文摘Kinesin-1 motor protein is a homodimer containing two identical motor domains connected by a common long coiledcoil stalk via two flexible neck linkers. The motor can step on a microtubule with a velocity of about 1 μm·s-1and an attachment duration of about 1 s under physiological conditions. The available experimental data indicate a tradeoff between velocity and attachment duration under various experimental conditions, such as variation of the solution temperature,variation of the strain between the two motor domains, and so on. However, the underlying mechanism of the tradeoff is unknown. Here, the mechanism is explained by a theoretical study of the dynamics of the motor under various experimental conditions, reproducing quantitatively the available experimental data and providing additional predictions. How the various experimental conditions lead to different decreasing rates of attachment duration versus velocity is also explained.
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12262005,11962003,and 11602062)the Postgraduate Education Reform and Quality Improvement Project of Henan Province(Grant No.YJS2024AL138)the Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX096Y).
文摘Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x a)2+(y1)2+(z 1/a)2=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
基金supported by the Surface Project of the National Natural Science Foundation of China(No.71273024)the Fundamental Research Funds for the Central Universities of China(2021YJS080).
文摘This study proposes a prediction model considering external weather and holiday factors to address the issue of accurately predicting urban taxi travel demand caused by complex data and numerous influencing factors.The model integrates the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and Convolutional Long Short Term Memory Neural Network(ConvLSTM)to predict short-term taxi travel demand.The CEEMDAN decomposition method effectively decomposes time series data into a set of modal components,capturing sequence characteristics at different time scales and frequencies.Based on the sample entropy value of components,secondary processing of more complex sequence components after decomposition is employed to reduce the cumulative prediction error of component sequences and improve prediction efficiency.On this basis,considering the correlation between the spatiotemporal trends of short-term taxi traffic,a ConvLSTM neural network model with Long Short Term Memory(LSTM)time series processing ability and Convolutional Neural Networks(CNN)spatial feature processing ability is constructed to predict the travel demand for urban taxis.The combined prediction model is tested on a taxi travel demand dataset in a certain area of Beijing.The results show that the CEEMDAN-ConvLSTM prediction model outperforms the LSTM,Autoregressive Integrated Moving Average model(ARIMA),CNN,and ConvLSTM benchmark models in terms of Symmetric Mean Absolute Percentage Error(SMAPE),Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and R2 metrics.Notably,the SMAPE metric exhibits a remarkable decline of 21.03%with the utilization of our proposed model.These results confirm that our study provides a highly accurate and valid model for taxi travel demand forecasting.
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52208299,and 52108260)the 2021 Tencent XPLORER PRIZE。
文摘In order to clarify the fatigue damage evolution of concrete exposed to flexural fatigue loads,ultrasonic pulse velocity(UPV),impact-echo technology and surface electrical resistance(SR) method were used.Damage variable based on the change of velocity of ultrasonic pulse(Du) and impact elastic wave(Di)were defined according to the classical damage theory.The influences of stress level,loading frequency and concrete strength on damage variable were measured.The experimental results show that Du and Di both present a three-stages trend for concrete exposed to fatigue loads.Since impact elastic wave is more sensitive to the microstructure damage in stage Ⅲ,the critical damage variable,i e,the damage variable before the final fracture of concrete of Di is slightly higher than that of Du.Meanwhile,the evolution of SR of concrete exposed to fatigue loads were analyzed and the relationship between SR and Du,SR and Di of concrete exposed to fatigue loads were established.It is found that the SR of concrete was decreased with the increasing fatigue cycles,indicating that surface electrical resistance method can also be applied to describe the damage of ballastless track concrete exposed to fatigue loads.
基金supported by the Postdoctoral Fellowship Program(Grant No.:(IO)R016320001)by Mahidol University,Thailand.supported by Mahidol University,Thailand(to Associate Professor Sakda Khoomrung)funding support from the National Science,Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation,Thailand(Grant No.:B36G660007).
文摘The collision cross-sections(CCS)measurement using ion mobility spectrometry(IMS)in combination with mass spectrometry(MS)offers a great opportunity to increase confidence in metabolite identification.However,owing to the lack of sensitivity and resolution,IMS has an analytical challenge in studying the CCS values of very low-molecular-weight metabolites(VLMs250 Da).Here,we describe an analytical method using ultrahigh-performance liquid chromatography(UPLC)coupled to a traveling wave ion mobility-quadrupole-time-of-flight mass spectrometer optimized for the measurement of VLMs in human urine samples.The experimental CCS values,along with mass spectral properties,were reported for the 174 metabolites.The experimental data included the mass-to-charge ratio(m/z),retention time(RT),tandem MS(MS/MS)spectra,and CCS values.Among the studied metabolites,263 traveling wave ion mobility spectrometry(TWIMS)-derived CCS values(TWCCSN2)were reported for the first time,and more than 70%of these were CCS values of VLMs.The TWCCSN2 values were highly repeatable,with inter-day variations of<1%relative standard deviation(RSD).The developed method revealed excellent TWCCSN2 accuracy with a CCS difference(DCCS)within±2%of the reported drift tube IMS(DTIMS)and TWIMS CCS values.The complexity of the urine matrix did not affect the precision of the method,as evidenced by DCCS within±1.92%.According to the Metabolomics Standards Initiative,55 urinary metabolites were identified with a confidence level of 1.Among these 55 metabolites,53(96%)were VLMs.The larger number of confirmed compounds found in this study was a result of the addition of TWCCSN2 values,which clearly increased metabolite identification confidence.
基金support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2019319)support from the Start-up Foundation of Suzhou Institute of Nano-Tech and Nano-Bionics,CAS,Suzhou (Grant No.Y9AAD110)。
文摘A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.
文摘This study presents the ballistic limit velocity of small caliber projectiles against SS400 steel plate derived from live-fire ballistic experiments. Four different small caliber projectiles were tested against SS400 steel plates of 9 mm, 10 mm, and 12 mm thicknesses. The ballistic limit velocity was calculated using two standard methods, MIL-STD-662F and NIJ-STD-0101.06, and additionally using a support vector machine algorithm. The results show a linear relationship between the plate thickness and ballistic limit velocity. Further, the relative penetration performance among five different small caliber projectiles was analyzed using the Penetration Performance Ratio(PPR) introduced in this study, which suggests the potential of PPR to predict the ballistic limit velocity of other untested materials and/or different projectiles.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51975396)the Natural Science Foundation of Shanxi Province(Grant No.202103021224264).
文摘The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for the demagnetization motor.A demagnetization mathematical model is established to describe a permanent magnet synchronous motor,which took the change of permanent magnet flux linkage parameters as a factor to count the demagnetization error in velocity tracking.The uncertain disturbance estimation model of the control system is built based on ESO,which eliminates the system error by the feedforward current compensation.It is compared with the vector control method in terms of control accuracy.The simulation results show that the current feedforward vector control method based on ESO reduces the velocity tracking error greatly in conditions of motor demagnetization less than 30%.It is effective to improve the operation accuracy of the mobile robot.
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金funded by the Open Projects Foundation of Engineering Research Center of Disaster Prevention and Mitigation of Southeast Coastal Engineering Structures of Fujian Province University(Grant No.2022009)the National Natural Science Foundation of China(Grant No.51708429)the Construction Science and Technology Plan Projects of Hubei Province(Grant No.2023011).
文摘Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis,a combined simulation system of train-bridge coupling system(TBCS)under earthquake(MAETB)is developed based on the cooperative work of MATLAB and ANSYS.The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway.The influence of different driving speeds,seismic wave intensities,and traveling wave effects on the dynamic response of the TBCS under the actions of the earthquakes is discussed.The results show that the bridge displacement increase in magnitude in the lateral direction is more significant than in the vertical direction under the action of an earthquake.The traveling wave effect can significantly reduce the lateral response of the bridge,but it will significantly increase the train derailment coefficient.When the earthquake intensity exceeds 0.2 g,the partial derailment coefficient of the train has exceeded the limit value of the specification.
基金supported by the China National Special Fund for Earthquake Scientific Research in Public Interest(201008001)NSFC(41074067)
文摘A shear-wave velocity model of the crust and uppermost mantle beneath the SE Tibetan plateau was derived by inverting Rayleigh-wave group-velocity mea- surements of periods between 10 and 70 s. Rayleigh-wave group-velocity dispersions along more than 3,000 inter- station paths were measured based on analysis of telese- ismic wavelbrm data recorded by temporary seismic stations. These observations were then utilized to construct 2D group-velocity maps in the period range of 10-70 s. Tile new group-velocity maps have an enhanced resolution compared with previous global and regional group-velocity models in this region because of the denser and more uniform data coverage. The lateral resolution across the region is about 0.5° for the periods used in this study. Local dispersion curves were then inverted for a 3D shear-wave velocity model of the region by applying a linear inversion scheme. Our 3D shear-wave model confirms the presence of low-velocity zones (LVZs) in the crust beneath the northern part of this region. Our irnaging shows that the upper-middle crustal LVZ beneath the Tengchong region is isolated from these LVZs beneath the eastern and northern part of this region. The upper-middle crustal LVZ may be regarded as evidence of a rnagma chamber in the crust beneath the Tengchong Volcanoes. Our model also reveals a slow lithospheric structure beneath Tengchong and a fast shield-like mantle beneath the stable Yangtze block.
文摘In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen.
文摘This study utilizes empirical equations to describe the propagation of vibrations induced by blasting, with the goal of predicting the attenuation of Peak Particle Velocity (PPV) at the Yaramoko mine in Bagassi, Burkina Faso, a site characterized by granitoid rock. Four empirical PPV prediction equations were employed, so-called Duvall & Fogelson (or the United States Bureau of Mines “USBM”), Langefors and Kihlstrom, Ambressys-Hendron, and the Bureau of Indian Standard. The constant parameters for each of these equations, referred to as site constants, were derived from linear regression curves. The results show that the site constants k, a, and b of 4762, 0.869, and 1.737, respectively, derived from the general prediction equation by Davies, PPV = kQaD−b, based on Duvall & Fogelson, are in good agreement with values of 4690, 0.9, and 1.69, respectively, for similar rock types in Spain. Regarding the impacts of blasting on houses, the findings indicate that houses built from laterite-block bricks in the village of Bagassi are the most vulnerable to vibration waves, followed by those constructed with cinder-block bricks. In contrast, houses made of banco bricks are the most resilient. Additionally, it was determined that during blasting operations, adjusting the blasting parameters to ensure the PPV does not exceed 2 mm/s at the level of nearby dwellings can minimize the appearance of cracks in houses.
基金Climb Project Continental Dynamics of East Asia and Joint Seismological Science Foundation of China (9507413).
文摘Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.