期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
Seismic response and correlation analysis of a pile-supported wharf to near-fault pulse-like ground motions
1
作者 Wang Jianfeng Su Lei +2 位作者 Xie Libo Ling Xianzhang Ju Peng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期883-897,共15页
Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the ... Earthquake investigations have shown that near-fault pulse-like(NF-P)ground motions have unique characteristics compared to near-fault non-pulse-like(NF-NP)and far-field(FF)ground motions.It is necessary to study the seismic response of pile-supported wharf(PSW)structures under NF-P ground motions.In this study,a three-dimensional finite element numerical model is created to simulate a PSW.By imparting three types of ground motion,the engineering demand parameters(EDPs)of PSW under NF-P ground motions were analyzed and compared,in which EDPs are the maximum displacement and bending moment of the piles.Twenty intensity measures(IMs)were selected to characterize the properties of ground motions.The correlation between IMs and EDPs was explored.The results show that the piles present larger displacement and bending moment under NF-P ground motions compared to NF-NP and FF ground motions.None of the IMs have a high correlation with EDPs under NF-P ground motions,and these IMs are more applicable to FF ground motions.The correlation coefficients between EDPs and IMs under three types of ground motion were obtained,which will provide a valuable reference for the seismic design of PSWs. 展开更多
关键词 pile-supported wharf correlation analysis near-fault pulse-like ground motion intensity measure seismic response
下载PDF
Pulse-like ground motion observed during the 6 February 2023 M_(W)7.8 Pazarcık Earthquake(Kahramanmaraş,SE Türkiye) 被引量:2
2
作者 Fan Wu Junju Xie +6 位作者 Zhao An Chenghao Lyu Tuncay Taymaz Tahir Serkan Irmak Xiaojun Li Zengping Wen Baofeng Zhou 《Earthquake Science》 2023年第4期328-339,共12页
In this study,we analyzed 100 three-component strong ground motion records observed within 200 km of the causative fault of the 6 February 2023 M_(W)7.8 Pazarcık(Kahramanmaraş)Earthquake in SE Türkiye.The wavelet... In this study,we analyzed 100 three-component strong ground motion records observed within 200 km of the causative fault of the 6 February 2023 M_(W)7.8 Pazarcık(Kahramanmaraş)Earthquake in SE Türkiye.The wavelet method was utilized to identify and analyze the characteristics of pulse-like ground motions in the near-fault region,while considering the uncertainty of the pulse orientation during the analysis.Our investigation focused on the effects of the focal mechanism and rupture process on the spatial distribution,pulse orientation,and maximum pulse direction of the observed pulse-like ground motion.We also analyzed the amplitude and period of the observed ground pulses and the effect of long-period amplification on the ground motion response spectra.Our results indicated the following:(1)A total of 21 typical ground velocity pulses were observed during this earthquake,exhibiting complex characteristics due to the influence of the strike-slip mechanism and rupture directivity.Most ground pulses(17 out of 21)were recorded within 20 km of the fault,in a wide range of orientations,including normal and parallel to the fault direction.The waveforms exhibited unidirectional features,indicating the effects of left-lateral fault slip.Distinct pulses observed more than 20 km from the fault were mainly oriented normal to the fault.The waveforms were bidirectional with double-or multi-round trips as a result of rupture directivity.(2)The amplitudes of the observed pulses ranged from 30.5 to 220.0 cm/s,with the largest peak velocity of 220.0 cm/s observed at Station 3138.The pulse periods ranged from 2.3 to 14.5 s,with the longest pulse period of 14.5 s observed at Station 3116.The amplitude and period of the pulses observed during this earthquake were comparable to those of similar-magnitude global earthquakes.The amplitude of the pulses decreased significantly with increasing fault distance,whereas the pulse period was not significantly affected by the fault distance.(3)Compared with non-pulse records,the velocity pulse records had a pronounced amplification effect on the acceleration response spectra near the pulse period,with factors ranging from 2.1 to 5.8.The larger velocity pulses also significantly amplified the velocity response spectra,particularly over the long periods.This significant amplification effect of the pulses on the response spectra leads to empirical models underestimating the long-period earthquake ground motion. 展开更多
关键词 2023 M_(W)7.8 Pazarcık Earthquake pulse-like ground motion response spectrum predominant period
下载PDF
Effects of the probability of pulse-like ground motions on landslide susceptibility assessment in near-fault areas
3
作者 LIU Jing FU Hai-ying +6 位作者 ZHANG Ying-bin XU Pei-yi HAO Run-dan YU Hai-hong HE Yun-yong DENG Hong-yan ZHENG Lu 《Journal of Mountain Science》 SCIE CSCD 2023年第1期31-48,共18页
Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain ... Earthquake-induced strong near-fault ground motion is typically accompanied by largevelocity pulse-like component,which causes serious damage to slopes and buildings.Although not all near-fault ground motions contain a pulse-like component,it is important to consider this factor in regional earthquake-induced landslide susceptibility assessment.In the present study,we considered the probability of the observed pulse-like ground motion at each site(PP)in the region of an earthquake as one of the conditioning factors for landslide susceptibility assessment.A subset of the area affected by the 1994Mw6.7 Northridge earthquake in California was examined.To explore and verify the effects of PP on landslide susceptibility assessment,seven models were established,consisting of six identical influencing factors(elevation,slope gradient,aspect,distance to drainage,distance to roads,and geology)and one or two factors characterizing the intensity of the earthquake(distance to fault,peak ground acceleration,peak ground velocity,and PP)in logistic regression analysis.The results showed that the model considering PP performed better in susceptibility assessment,with an area under the receiver operating characteristic curve value of 0.956.Based on the results of relative importance analysis,the contribution of the PP value to earthquakeinduced landslide susceptibility was ranked fourth after the slope gradient,elevation,and lithology.The prediction performance of the model considering the pulse-like effect was better than that reported previously.A logistic regression model that considers the pulse-like effect can be applied in disaster prevention,mitigation,and construction planning in near-fault areas. 展开更多
关键词 EARTHQUAKE LANDSLIDES pulse-like ground motion Logistic regression Susceptibility assessment 1994 Northridge earthquake
下载PDF
Pulses in ground motions identified through surface partial matching and their impact on seismic rocking consequence 被引量:1
4
作者 Tang Yuchuan Wang Jiankang Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期35-50,共16页
In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establis... In seismology and earthquake engineering,it is fundamental to identify and characterize the pulse-like features in pulse-type ground motions.To capture the pulses that dominate structural responses,this study establishes congruence and shift relationships between response spectrum surfaces.A similarity search between spectrum surfaces,supplemented with a similarity search in time series,has been applied to characterize the pulse-like features in pulse-type ground motions.The identified pulses are tested in predicting the rocking consequences of slender rectangular blocks under the original ground motions.Generally,the prediction is promising for the majority of the ground motions where the dominant pulse is correctly identified. 展开更多
关键词 velocity pulse ground motion surface similarity ROCKING OVERTURNING
下载PDF
Study on equivalent velocity pulse of nearfault ground motions 被引量:5
5
作者 LI Xin-le(李新乐) +1 位作者 ZHU Xi(朱晞) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第6期697-706,共11页
Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-his... Near-fault strong ground motions that resulted in serious structural damage are characterized by directivity effect and pulse-type motion. Large-amplitude and long-period pulses are contained in the velocity time-history traces of near-fault pulse-type records. A reasonable model of equivalent velocity pulse is proposed on the basis of the ex- isted models in this paper to simplify the calculation and analysis. Based on the large amount of collected near-fault strong earthquakes records, the parameters describing equivalent velocity pulse model such as pulse period, pulse intensity and number of predominant pulses are studied, and comparison is made with the results obtained by others models. The proposed model is contributive to the seismic design for structures in near-fault areas. 展开更多
关键词 near-fault ground motion equivalent velocity pulse pulse period pulse intensity
下载PDF
Intensity measures for the seismic response evaluation of buried steel pipelines under near-field pulse-like ground motions 被引量:3
6
作者 Alireza Kiani Mehdi Torabi S.Mohammad Mirhosseini 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期917-931,共15页
Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, h... Ground-motion Intensity Measures (IMs) are used to quantify the strength of ground motions and evaluate the response of structures. IMs act as a link between seismic demand and seismic hazard analysis and therefore, have a key role in performance-based earthquake engineering. Many studies have been carried out on the determination of suitable IMs in terms of effi ciency, suffi ciency and scaling robustness. The majority of these investigations focused on ordinary structures such as buildings and bridges, and only a few were about buried pipelines. In the current study, the optimal IMs for predicting the seismic demand of continuous buried steel pipelines under near-fi eld pulse-like ground motion records is investigated. Incremental dynamic analysis is performed using twenty ground motion records. Using the results of the regression analysis, the optimality of 23 potential IMs are studied. It is concluded that specifi c energy density (SED) followed by VSI[ω1(PGD+RMSd )] are the optimal IMs based on effi ciency, suffi ciency and scaling robustness for seismic response evaluation of buried pipelines under near-fi eld ground motions. 展开更多
关键词 continuous BURIED steel PIPELINE intensity measure SCALING robustness pulse-like ground motion RECORDS performance-based EARTHQUAKE engineering
下载PDF
Relative energy zero ratio-based approach for identifying pulse-like ground motions 被引量:2
7
作者 Liu Ping Li Ning +2 位作者 Ma Hua Xie Lili Zhou Baofeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期1-16,共16页
Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault re... Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses;it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential. 展开更多
关键词 pulse-like ground motion velocity pulse relative energy zero-crossing ratio short-time input energy shorttime zero crossing rate
下载PDF
Identification of pulse-like ground motions using artificial neural network 被引量:2
8
作者 Ahed Habib Iman Youssefi Mehmet M.Kunt 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第4期899-912,共14页
For more than 20 years,the concept of near-fault pulse-like ground motion has been a topic of great interest due to its distinct characteristics,particularly due to directivity or fling effects,which are hugely influe... For more than 20 years,the concept of near-fault pulse-like ground motion has been a topic of great interest due to its distinct characteristics,particularly due to directivity or fling effects,which are hugely influenced by the rupture mechanism.These unexpected characteristics,along with their effective frequency,energy rate,and damage indices,create a near-fault,pulse-like ground motion capable of causing severe damage to structures.One of the most common approaches for identifying these ground motions is done by conducting wavelet decomposition of the ground motion time history to extract a pulse signal and eventually categorize an earthquake by comparing the original signal to the residual one.However,to overcome the intensive calculations required in this approach,this study proposes using artificial neural networks to identify pulse-like ground motions through classification to predict their pulse period by means of regression analysis.Furthermore,the study is intended to evaluate the reliability and accuracy of various artificial neural networks in identifying pulse-like ground motions and predicting their pulse periods.In general,the results of the study have shown that the artificial neural network can identify pulse-like earthquakes and reliably predict their pulse period. 展开更多
关键词 pulse-like ground motions NEAR-FAULT artificial neural network IDENTIFICATION
下载PDF
Characteristics of near-fault ground motion containing velocity pulses 被引量:1
9
作者 韦韬 赵凤新 张郁山 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第6期677-686,共10页
There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few... There are many reports about the research on near-fault velocity pulses, which focus on the generation of velocity pulse and simplify the velocity pulse so as to be used in the seismic design of structure, However few researches have put emphasis on the characteristics of near-fault ground motions containing velocity pulses, especially the characteristics relevant with the design response spectrum prescribed by the code. Through collection of a large number of near-fault records containing velocity pulses, the response spectra and the characteristic periods of records containing no pulses are compared with those of records containing pulses. Response spectra of near-fault records are compared with standard spectra given by code; furthermore, the response spectra and the characteristic periods of each earthquake are compared with that given by code. The result shows that at long periods (longer than 1.5 s), the response spectrum of pulse-containing records is bigger than the response spectrum of no-pulse-containing records; when the characteristic period of near-fault records is calculated, the method that does not fix frequency is more reasonable because the T1 and T2 have a lagging tendency; regardless of the site Ⅰ and site Ⅱ, the characteristic period of pulse-containing records is over twice bigger than the characteristic period given by the code, 展开更多
关键词 NEAR-FAULT velocity pulse ground motion response spectrum characteristic period
下载PDF
Artificial ground motion compatible with specified peak velocity and target spectrum 被引量:1
10
作者 赵凤新 张郁山 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第4期461-471,共11页
In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initi... In this paper, a method, which synthesizes the artificial ground motion compatible with the specified peak velocity as well as the target acceleration response spectrum, was proposed. In this method, firstly, an initial acceleration time history α8^(0) (t), which satisfies the prescribed peak ground acceleration, the target spectral acceleration ST(ω, ζ),and the specified intensity envelope, is generated by the traditional method that generates the requency domain; secondly,α8^(0) (t)is further modulated by superimposing narrow-band time histories upon it in the time domain to make its peak velocity, approach the target peak ground velocity, and at the same time to improve its fitting precision to the target spectrum. Numerical examples show that this algorithm boasts high calculation precisions. 展开更多
关键词 artificial ground motion acceleration response spectrum peak velocity FITTING
下载PDF
Direct use of peak ground motion parameters for the estimation of inelastic displacement ratio of SDOF systems subjected to repeated far fault ground motions 被引量:6
11
作者 Cengizhan Durucan Muhammed Gümüs 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期771-785,共15页
This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion par... This study is aimed at developing statistical equations to estimate the inelastic displacement ratio of singledegree-of-freedom systems subjected to far fault repeated earthquakes. In the study, peak ground motion parameters are used to define the scatter of the original data. The ratio of peak ground acceleration to peak ground velocity, and peak ground velocity of the ground motion records and structural parameters such as period of vibration and lateral strength ratio are used in the proposed equations. For the development of the equations, nonlinear time history analyses of single-degree-offreedom systems are conducted. Then, the results are used in a multivariate regression procedure. The equations are verified by comparing the estimated results with the calculated results. The average error and coefficient of variation of the proposed equations are presented. The analyses results revealed that the direct use of peak ground motion parameters for the estimation of inelastic displacement ratio significantly reduced the scatter in the original data and yielded accurate results. From the comparative results it is also observed that results obtained using equations specific to peak ground velocity or peak ground acceleration to peak ground velocity ratio are similar. 展开更多
关键词 C1 peak ground velocity peak ground acceleration far fault ground motions sequential ground motions
下载PDF
Representation of near-fault pulse-type ground motions 被引量:7
12
作者 谢礼立 徐龙军 Adrian Rodriguez-Marek 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期191-199,共9页
Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the ef... Near-fault ground motions with long-period pulses have been identified as critical in the design of structures. To aid in the representation of this special type of motion, eight simple pulses that characterize the effects of either the flingstep or forward-directivity are considered. Relationships between pulse amplitudes and velocity pulse period for different pulses are discussed. Representative ratios and peak acceleration amplification can exhibit distinctive features depending on variations in pulse duration, amplitude and the selected acceleration pulse shape. Additionally, response spectral characteristics for the equivalent pulses are identified and compared in terms of fixed PGA and PGV, respectively. Response spectra are strongly affected by the duration of pulses and the shape of the basic pulses. Finally, dynamic time history response features of a damped SDOF system subjected to pulse excitations are examined. These special aspects of pulse waveforms and their response spectra should be taken into account in the estimation of ground motions for a project site close to a fault. 展开更多
关键词 near-fault ground motion PULSE velocity pulse period response spectrum
下载PDF
Identification of acceleration pulses in near-fault ground motion using the EMD method 被引量:4
13
作者 张郁山 胡聿贤 +2 位作者 赵凤新 梁建文 杨彩红 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2005年第2期201-212,共12页
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposi... In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures. 展开更多
关键词 acceleration pulse velocity pulse near-fault pulse-like ground motion empirical mode decomposition(EMD) response spectrum
下载PDF
Effect of seismic super-shear rupture on the directivity of ground motion acceleration 被引量:1
14
作者 Hu Jinjun Xie Lili 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期519-527,共9页
The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element me... The effect of seismic super-shear rupture on the directivity of ground motions using simulated accelerations of a vertical strike-slip fault model is the topic of this study. The discrete wave number/finite element method was adopted to calculate the ground motion in the horizontal layered half space. An analysis of peak ground acceleration (PGA) indicates that similar to the sub-shear situation, directivity also exists in the super-shear situation. However, there are some differences as tbllows: (1) The PGA of the fault-normal component decreases with super-shear velocity, and the areas that were significantly affected by directivity in the PGA field changed from a cone-shaped region in the forward direction in a sub-shear situation to a limited near-fault region in a super-shear situation. (2) The PGA of the fault-parallel and vertical component is not as sensitive as the fault-normal component to the increasing super-shear velocity. (3) The PGA of the fault-normal component is not always greater than the fault-parallel component when the rupture velocity exceeds the shear wave velocity. 展开更多
关键词 ground motion DIRECTIVITY rupture velocity super-shear rupture peak ground acceleration
下载PDF
Simulation method of near-fault pulse-type ground motion 被引量:1
15
作者 田玉基 杨庆山 卢明奇 《Acta Seismologica Sinica(English Edition)》 CSCD 2007年第1期80-87,共8页
The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step ... The two characteristics of near-fault ground motions, i.e., the forward directivity effect and permanent displacement effect, result in long period and large velocity pulse in the velocity time history and large step pulse in the displacement time history. Considering the two effects, a simple expression of continuous function for equivalent velocity pulse time history is presented in this paper. The equivalent pulse model, in which the pulse period, peak velocity and pulse shape are described by five parameters, is highly advantageous to fit and simulate the pulse-type velocity time history. The equivalent pulse model comprises only one low-frequency component while the high-frequency component of a pulse-type earthquake record cannot be considered. Based on 28 records of 11 earthquakes, the pulse frequency of pulse-type records is generally less than 1 Hz. Therefore the low-frequency component and high-frequency component are simulated respectively and combined them together to generate a pulse-type ground motion. 展开更多
关键词 pulse-type ground motion equivalent velocity pulse low-frequency component high-frequency component
下载PDF
Apparent velocity estimation with P-SV ratio method
16
作者 Liu Yuewei Li Hongnan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期393-402,共10页
The apparent velocity of the incident wave is an important parameter for simulating rotational ground motion with theoretical methods, but it is difficult to estimate effectively when there is only a single record. Th... The apparent velocity of the incident wave is an important parameter for simulating rotational ground motion with theoretical methods, but it is difficult to estimate effectively when there is only a single record. This paper discusses a P-SV ratio method based on elastodynamic theory in a multi-layer isotropic elastic half space. The apparent velocities of four earthquakes in the SMART1 array are calculated with this method. The result is close to a method that uses travel time analysis. Furthermore, the factors that impact the apparent velocity and equivalent incident angle are considered according to records from the Chi-Chi earthquake. There is no obvious relationship between the equivalent incident angle and epicenter distance. However, the equivalent incident angle is obviously dependent on the site conditions. 展开更多
关键词 apparent velocity P-SV ratio equivalent incident angle rotational ground motion
下载PDF
Soft Soil Site Characterization on the Coast of Yantai and Its Effect on Ground Motion Parameters
17
作者 Lü Yuejun Tang Rongyu Peng Yanju 《Earthquake Research in China》 2005年第2期116-124,共9页
According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site ... According to the Chinese GB50011-2001 code and the recommended provisions of FEMANEHRP and EUROCODE 8, by using shear wave velocity and borehole data, the site classification is evaluated for a typical soft soil site on the Yantai seacoast. The site seismic ground motion effect is analyzed and the influence of the coastal soil on design ground motion parameters is discussed. The results show that the brief site classification can not represent the real conditions of a soft soil site; the soft soil on the coast has a remarkable impact on the magnitude and spectrum of ground motion acceleration. The magnification on peak acceleration is bigger, however, due to the nonlinear deformation of the soil. The magnification is reduced noulinearly with the increase of input ground motion; the spectrum is broadened and the characteristic period elongated on the soft soil site. 展开更多
关键词 Site classification Shear wave velocity Earthquake ground motion Yantai
下载PDF
内蒙古地区强震动台站背景噪声与数据质量分析 被引量:1
18
作者 安全 韩晓明 +3 位作者 包文超 翟浩 赵铁锁 赵星 《地震学报》 CSCD 北大核心 2024年第3期490-501,共12页
计算了内蒙古地区193个强震动台站2022年连续观测数据的加速度功率谱密度,通过绘制不同时空、不同加速度计、不同频段的功率谱密度和功率谱概率密度函数图及背景噪声速度均方根值分布图,评估了该区强震动台站的背景噪声变化特征,对出现... 计算了内蒙古地区193个强震动台站2022年连续观测数据的加速度功率谱密度,通过绘制不同时空、不同加速度计、不同频段的功率谱密度和功率谱概率密度函数图及背景噪声速度均方根值分布图,评估了该区强震动台站的背景噪声变化特征,对出现的功率谱密度异常进行了具体分析,并针对强震动台站数据异常检测及处理提出了相应的建议。研究结果显示:不同加速度计、不同时空强震动台站的背景噪声功率谱密度昼夜差异主要体现在1 Hz以上频段,且不同区域的昼夜差异变化较大;QA-2g型、JS-A2型和TDA-33M型三种加速度计在2 s频点的背景噪声功率谱密度随区域和三分向变化较小;从强震动台站2 s频点背景噪声的监控能得到可靠的观测数据异常,数据异常主要由加速度计零点漂移大、加速度计故障、脉冲干扰、系统参数有误造成,建议优化站点观测环境,进一步规范仪器安装、调试及JOPENS系统的参数配置和审核。 展开更多
关键词 强震动台站 功率谱密度(PSD)值 速度均方根 数据质量 加速度计
下载PDF
2022年四川泸定 M_(s)6.8地震强震动特性研究 被引量:2
19
作者 张聪 周宝峰 +4 位作者 任叶飞 王晓敏 余桦 张亚军 吴华灯 《世界地震工程》 北大核心 2024年第1期13-24,共12页
北京时间2022年9月5日12时52分,四川省甘孜州泸定县发生M_(s)6.8级地震。国家强震动台网获得了133组三分量加速度记录,在对记录进行初步筛选和滤波后,研究了PGA和PGV衰减关系、竖向地震动特点、地震动速度脉冲,对比分析了反应谱和设计谱... 北京时间2022年9月5日12时52分,四川省甘孜州泸定县发生M_(s)6.8级地震。国家强震动台网获得了133组三分量加速度记录,在对记录进行初步筛选和滤波后,研究了PGA和PGV衰减关系、竖向地震动特点、地震动速度脉冲,对比分析了反应谱和设计谱,着重对石棉挖角台站附近震害与地震动的相关性进行了分析,结论如下:1)三种台站强震动记录的PGA和PGV拟合曲线都比较相近,PGA、PGV拟合曲线与霍俊荣的预测模型较为接近;2)竖向地震动偏大,约38.2%的强震动记录V/H大于2/3,可能是屋顶塌落、柱子扭转和天花板坠落等震害现象出现的主要原因;3)识别出具有速度脉冲特性的记录11条,该类记录对长周期结构影响较大;4)所选记录反应谱大多超过了罕遇地震设计谱水平段,具有速度脉冲特性的051SMW台站周围房屋破坏较严重,人员伤亡较重。 展开更多
关键词 泸定M_(s)6.8地震 地震动衰减 竖向地震动 速度脉冲 加速度反应谱
下载PDF
Analysis of faulting destruction and water supply pipeline damage from the first mainshock of the February 6,2023 Türkiye earthquake doublet 被引量:1
20
作者 Xiaoqing Fan Libao Zhang +2 位作者 Juke Wang Yefei Ren Aiwen Liu 《Earthquake Science》 2024年第1期78-90,共13页
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw... In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized. 展开更多
关键词 Türkiye earthquake fault displacement near-fault ground motion velocity pulse water supply pipeline
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部