Accurate decay detection and health assessment of trees at low temperatures is an important issue for forest management and ecology in cold areas.Low temperature ice formation on tree health assessment is unknown.Beca...Accurate decay detection and health assessment of trees at low temperatures is an important issue for forest management and ecology in cold areas.Low temperature ice formation on tree health assessment is unknown.Because electric resistance tomography and stress wave tomography are two widely used methods for the detection of tree decay,this study investigated the effect of ice content on trunk electrical resistance and stress wave velocity to improve tree health assessment accuracy.Moisture content,trunk electrical resistance and stress wave velocity using time domain reflectometry were carried out on Larix gmelinii and Populus simonii.Ice content is based on moisture content data.The ice content of both species showed a trend of increasing and then decreasing.This was opposite with ambient temperatures.With the decrease of temperatures,daily average ice content increased,but the range narrowed gradually and both electrical resistance and stress wave velocity increased.Both increased rapidly near 0℃,mainly caused by ice formation(phase change and freezing of free water)in live trees.In addition,both are positively correlated with ice content.The results suggest that ice content should be considered for improving the accuracy of tree decay detection and health evaluation using electric resistance tomography and stress wave velocity methods under low temperatures.展开更多
The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of th...The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.展开更多
This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a ...This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.展开更多
The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and H...The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions.展开更多
The stress wave propagation law and dynamic buckling critical velocity are formulated and solved by considering a general axial connecting boundary for a slender elastic straight rod impacted by a rigid body. The infl...The stress wave propagation law and dynamic buckling critical velocity are formulated and solved by considering a general axial connecting boundary for a slender elastic straight rod impacted by a rigid body. The influence of connecting stiffness on the critical velocity is investigated with varied impactor mass and buckling time. The influences of rod length and rod mass on the critical velocity are also discussed. It is found that greater connecting stiffness leads to larger stress amplitude, and further results in lower critical velocity. It is particularly noteworthy that when the connecting stiffness is less than a certain value, dynamic buckling only occurs before stress wave reflects off the connecting end. It is also shown that longer rod with larger slenderness ratio is easier to buckle, and the critical velocity for a larger-mass rod is higher than that for a lighter rod with the same geometry.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.31870537)Innovation Foundation for Doctoral Program of Forestry Engineering of Northeast Forestry University (Grant No.LYGC202115)National Key Research and Development Program of China (Grant No.2021YFD2201205)。
文摘Accurate decay detection and health assessment of trees at low temperatures is an important issue for forest management and ecology in cold areas.Low temperature ice formation on tree health assessment is unknown.Because electric resistance tomography and stress wave tomography are two widely used methods for the detection of tree decay,this study investigated the effect of ice content on trunk electrical resistance and stress wave velocity to improve tree health assessment accuracy.Moisture content,trunk electrical resistance and stress wave velocity using time domain reflectometry were carried out on Larix gmelinii and Populus simonii.Ice content is based on moisture content data.The ice content of both species showed a trend of increasing and then decreasing.This was opposite with ambient temperatures.With the decrease of temperatures,daily average ice content increased,but the range narrowed gradually and both electrical resistance and stress wave velocity increased.Both increased rapidly near 0℃,mainly caused by ice formation(phase change and freezing of free water)in live trees.In addition,both are positively correlated with ice content.The results suggest that ice content should be considered for improving the accuracy of tree decay detection and health evaluation using electric resistance tomography and stress wave velocity methods under low temperatures.
文摘The velocity field and the associated shear stress corresponding to the longitudinal oscillatory flow of a generalized second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. Initially, the fluid and cylinders are at rest and at t = 0+ both cylinders suddenly begin to oscillate along their common axis with simple harmonic motions having angular frequencies Ω1 and Ω2. The solutions that have been obtained are presented under integral and series forms in terms of the generalized G and R functions and satisfy the governing differential equation and all imposed initial and boundary conditions. The respective solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for the similar flow of ordinary second grade fluid and Newtonian fluid are also obtained as limiting cases of our general solutions. At the end, the effect of different parameters on the flow of ordinary second grade and generalized second grade fluid are investigated graphically by plotting velocity profiles.
文摘This paper deals with the rotational flow of a generalized second grade fluid, within a circular cylinder, due to a torsional shear stress. The fractional calculus approach in the constitutive relationship model of a second grade fluid is introduced. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms to satisfy all imposed initial and boundary conditions. The solutions corresponding to second grade fluids as well as those for Newtonian fluids are obtained as limiting cases of our general solutions. The influence of the fractional coefficient on the velocity of the fluid is also analyzed by graphical illustrations.
文摘The velocity field and the associated shear stress corresponding to the torsional oscillatory flow of a second grade fluid, between two infinite coaxial circular cylinders, are determined by means of the Laplace and Hankel transforms. At time t = 0, the fluid and both the cylinders are at rest and at t = 0 + , cylinders suddenly begin to oscillate around their common axis in a simple harmonic way having angular frequencies ω 1 and ω 2 . The obtained solutions satisfy the governing differential equation and all imposed initial and boundary conditions. The solutions for the motion between the cylinders, when one of them is at rest, can be obtained from our general solutions. Furthermore, the corresponding solutions for Newtonian fluid are also obtained as limiting cases of our general solutions.
文摘The stress wave propagation law and dynamic buckling critical velocity are formulated and solved by considering a general axial connecting boundary for a slender elastic straight rod impacted by a rigid body. The influence of connecting stiffness on the critical velocity is investigated with varied impactor mass and buckling time. The influences of rod length and rod mass on the critical velocity are also discussed. It is found that greater connecting stiffness leads to larger stress amplitude, and further results in lower critical velocity. It is particularly noteworthy that when the connecting stiffness is less than a certain value, dynamic buckling only occurs before stress wave reflects off the connecting end. It is also shown that longer rod with larger slenderness ratio is easier to buckle, and the critical velocity for a larger-mass rod is higher than that for a lighter rod with the same geometry.