The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ...The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.展开更多
The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent eart...The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent earthquakes.After the impoundment of the reservoirs,seismic activity increased significantly.Therefore,it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds,thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas.In this study,we selected the data of 7.670 seismic events recorded by the seismic networks in Sichuan.Yunnan,and Chongqing and the temporary seismic arrays deployed nearby.We then applied the double-difference tomography method to this data,to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds.The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure.Seismic events are mainly distributed in the transition zones between high-and low-velocity anomalies,and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas.Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth:this high-velocity anomaly plays a role in stress accumulation,with few earthquakes distributed inside the high-velocity body.After the impoundment of the Baihetan reservoir,the number of earthquakes in the reservoir area increased significantly.The seismic events in the reservoir area north of 27°N were related to the enhanced activity of nearby faults after impoundment:the earthquakes in the reservoir area south of 27°N were probably induced by additional loads(or regional stress changes),and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure.展开更多
The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ning...The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration.In this study,we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution.Based on the dense seismic array including 35 short-period(5 s-100 Hz)seismometers with an average interstation distance of~5 km,Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion.Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm.The results revealed obvious low-velocity anomalies in the center of the basin,consistent with the low-velocity Cretaceous sedimentary rocks.The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies.The obvious seismic interface is about 2 km depth in the basin center and decreases to 700 m depth near the basin boundary,suggesting spatial thickness variations of the Cretaceous sediment.The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basincontrolling fault,which may provide possible upwelling channels for geothermal fluid.This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.展开更多
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background o...The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity.展开更多
Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting a...Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas.展开更多
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ...The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.展开更多
We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with inte...We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with interval 0.25°×0.25°, and group velocity distribution maps between 4 s and 30 s are obtained using ambient noise tomography method. The lateral resolution is estimated to be 20-50 km for most of the study area. We construct a 3-D S wave velocity model by inverting the pure path dispersion curve at each grid using a genetic algorithm with smoothing constraint. The crustal structure observed in the model includes sedimentary basins such as North China basin, Yanqing-Huailai basin and Datong basin. A well-defined low velocity zone is observed in the Beijing-Tianjin-Tangshan region in 22-30 km depth range, which may be related to the upwelling of hot mantle material. The high velocity zone near Datong, Shuozhou and Qingshuihe within the depth range of 1-23 km reveals stable characteristics of Ordos block. The Taihangshan front fault extends to 12 km depth at least.展开更多
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter...Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.展开更多
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geother...On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China.展开更多
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath ...The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.展开更多
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ...Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.展开更多
In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utili...In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utilized the seismic phase data both from a local dense array and from the regional seismic networks;we used the tomoDD program to invert for the high-resolution three-dimensional velocity structure within the depth range of 0–10 km and for accurate hypocentral locations in this area. We analyzed the seismogenic structures for the events of Xingwen M5.7 in 2018 and Gongxian M5.3 and Changning M6.0 in 2019. The results show that:(1) widespread lateral inhomogeneity exists in the velocity structure of the study area, and the location of the velocity anomaly is largely consistent with known structures. In the range of distinguishable depth, the inhomogeneity decreases with increasing depth, and the velocity structure anomalies in some areas are continuous in depth;(2) earthquakes occurred in clusters, showing the characteristics of zonal folding trends in the NW-SE and NE-SW directions;the focal depth in the area is generally shallow in both the sedimentary cap and the crystalline basement. The seismogenic structures of small earthquake clusters are different in size and occurrence in different sections, and the clusters occurred mostly in regions with high P-or S-wave velocities;(3) synthesis of a variety of data suggests that the seismogenic structures of the Xingwen M5.7 and Changning M6.0 earthquakes are associated with slip faults that trend NW-SE in, respectively, the south wing and the axis of the Changning–Shuanghe anticline, while that of the Gongxian M5.3 earthquake is associated with thrust faults that trend N-S in the Jianwu syncline region. The dynamic sources of the three earthquakes are all from the SE pushing of the Qinghai–Tibet block on the Sichuan basin;(4) the risk of future strong earthquakes in this area must be reevaluated in light of the facts(a)that in recent years, moderate-to-strong earthquake swarms have occurred frequently in southeast Sichuan;(b) that the complex structural area exhibits the easy-to-trigger characteristic, and(c) that the small-scale faults in this area are characterized by the phenomenon of stress "lock and release".展开更多
The Longmenshan fault zone(LMSF),characterized by complex structures and strong seismicity,is located at the junction between the eastern margin of the Tibetan Plateau and the north-western Sichuan basin.Since the Wen...The Longmenshan fault zone(LMSF),characterized by complex structures and strong seismicity,is located at the junction between the eastern margin of the Tibetan Plateau and the north-western Sichuan basin.Since the Wenchuan earthquake on May 12,2008,abundant studies of the formation mechanism of earthquakes along the LMSF were performed.In this study,a short-period dense seismic array deployed across the LMSF was applied by ambient noise tomography.Fifty-two 3-D seismic instruments were used for data acquisition for 26 days.We calculated the empirical Green's functions(EGFs)between different station-pairs and extracted 776 Rayleigh-wave dispersion curves between 2 and 7 s.And then,we used the direct-inversion method to obtain the fine shallow crustal S-wave velocity structure within 6 km depth in the middle section of the Longmenshan fault zone and nearby areas.Our results show that the sedimentary layer(>5 km)exists in the northwest margin of Sichuan Basin with a low S-wave velocity(~1.5-2.5 km/s)which is much thicker than that beneath the Longmenshan fault zone and the Songpan-Garze block.The high-velocity structures with clear boundaries below the middle of Longmenshan fault zone(~2-4 km)and the Songpan-Garze block(~4.5-6 km)probably reveal the NW-SE distribution patterns of both the Pengguan complex and the high-density belt hidden in the northwest of the Pengguan complex.And the obviously high-velocity anomalies observed at the depth of^1-2 km in the southeastern margin of the Songpan-Garze block can be considered as the Laojungou granites.Our results provide a high-resolution shallow velocity structure for detailed studies of the Longmenshan fault zone.展开更多
A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,...A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes.展开更多
In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence ...In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.展开更多
Determining the shallow structure of a sediment basin is important when evaluating potential seismic hazards given that such basins can significantly amplify seismic energy. The Luoyang basin is located in the western...Determining the shallow structure of a sediment basin is important when evaluating potential seismic hazards given that such basins can significantly amplify seismic energy. The Luoyang basin is located in the western He’nan uplift and is a Meso-Cenozoic depression basin. To characterize the shallow structure of the basin, we develop a model of the shallow high-resolution three-dimensional(3D)shear-wave velocity structure of the basin by applying ambient noise tomography to a dense array of 107 portable digital seismometers deployed over the basin. More than 1,400 Rayleigh-wave dispersion curves for periods in the range 0.5–5 s are extracted. The 3D variations of shear-wave velocity in the shallow crust are inverted using a direct surface-wave tomographic method with period-dependent ray tracing, with all the surface-wave group-velocity dispersion data being inverted simultaneously. The results show that in the shallow crust of the study area, the velocity distribution corresponds to surface geology and geological features. The Luoyang basin exhibits a low shear-wave velocity feature that is consistent with the distribution of sediment in the region,while the Xiongershan and Songshan uplifts exhibit higher shear-wave velocity structures. The results provide a shallow high-resolution 3D velocity model that can be used as a basis for simulation of strong ground motion and evaluation of potential seismic hazards.展开更多
In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Netwo...In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.展开更多
A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was deter-mined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow a...A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was deter-mined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the com-plicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.展开更多
3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the se...3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.展开更多
We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surfa...We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at -25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LYZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evi- dence, it is indicated that rock strength is high and defor- mation is weak in this area, which is why the level of seismicity is quite low. The profile at ~ 23~N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.展开更多
基金The National Natural Science Foundation of China under contract No.41806048the Open Fund of the Hubei Key Laboratory of Marine Geological Resources under contract No.MGR202009+2 种基金the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences under contract No.J1901-16the Aoshan Science and Technology Innovation Project of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ03-Seabed Resourcesthe Fund from the Korea Institute of Ocean Science and Technology(KIOST)under contract No.PE99741.
文摘The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
基金This work is supported by the National Key Research and Development Program of China(Nos.2021YFC3000602 and 2017YFC0404901)Joint Funds of the National Natural Science Foundation of China(No.U2139205)the Research Project Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21Z18)。
文摘The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent earthquakes.After the impoundment of the reservoirs,seismic activity increased significantly.Therefore,it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds,thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas.In this study,we selected the data of 7.670 seismic events recorded by the seismic networks in Sichuan.Yunnan,and Chongqing and the temporary seismic arrays deployed nearby.We then applied the double-difference tomography method to this data,to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds.The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure.Seismic events are mainly distributed in the transition zones between high-and low-velocity anomalies,and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas.Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth:this high-velocity anomaly plays a role in stress accumulation,with few earthquakes distributed inside the high-velocity body.After the impoundment of the Baihetan reservoir,the number of earthquakes in the reservoir area increased significantly.The seismic events in the reservoir area north of 27°N were related to the enhanced activity of nearby faults after impoundment:the earthquakes in the reservoir area south of 27°N were probably induced by additional loads(or regional stress changes),and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure.
基金supported by China Geological Survey (DD20190083, DD20221662)National Natural Science Foundation of China (41904044, 41974064, 42174076, 41874069)Youth Innovation Promotion Association CAS (2019330).
文摘The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration.In this study,we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution.Based on the dense seismic array including 35 short-period(5 s-100 Hz)seismometers with an average interstation distance of~5 km,Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion.Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm.The results revealed obvious low-velocity anomalies in the center of the basin,consistent with the low-velocity Cretaceous sedimentary rocks.The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies.The obvious seismic interface is about 2 km depth in the basin center and decreases to 700 m depth near the basin boundary,suggesting spatial thickness variations of the Cretaceous sediment.The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basincontrolling fault,which may provide possible upwelling channels for geothermal fluid.This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins.
基金supported by China earthquake scientific array exploration Southern section of North South seismic belt(201008001)Northern section of North South seismic belt(20130811)+1 种基金National Natural Science Foundation of China(41474057)Science for Earthquake Resllience of China Earthquake Administration(XH15040Y)
文摘The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity.
基金supported by China National Special Fund for Earthquake Scientific Research in Public Interest (Grant 201208004)National Natural Science Foundation of China (grant 41174040)Scientific Research Institutes’ Basic Research and Development Operations Special Fund of Institute of Geophysics,China Earthquake Administration (grant DQJB10A01)
文摘Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas.
基金National Natural Science Foundation of China (40074010) and Natural Science Foundation of Gansu Province(ZS981-A25-011).
文摘The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters.
基金supported by the National Natural Science Foundation of China (Nos. 40774038 and 90914005)Basic Research Project of Ministry of Science and Technology of China (No. 2006FY110100)+2 种基金National Nonprofit Institute Research Grant of Institute of Geophysics,China Earthquake Administration (IGPCEA) (No. DQJB09B08)supported by Italian MUR and University of Trieste in the framework of the Internationalization PhD Program (2004-2006)Contribution No. is 10FE3008,IGPCEA
文摘We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with interval 0.25°×0.25°, and group velocity distribution maps between 4 s and 30 s are obtained using ambient noise tomography method. The lateral resolution is estimated to be 20-50 km for most of the study area. We construct a 3-D S wave velocity model by inverting the pure path dispersion curve at each grid using a genetic algorithm with smoothing constraint. The crustal structure observed in the model includes sedimentary basins such as North China basin, Yanqing-Huailai basin and Datong basin. A well-defined low velocity zone is observed in the Beijing-Tianjin-Tangshan region in 22-30 km depth range, which may be related to the upwelling of hot mantle material. The high velocity zone near Datong, Shuozhou and Qingshuihe within the depth range of 1-23 km reveals stable characteristics of Ordos block. The Taihangshan front fault extends to 12 km depth at least.
基金Foundation item: National Scientific and Technological Development Program (95-973-02-02) the Climb Program (95-S-05-01) of National Scientific and Technological Ministry of China and the State Natural Sciences Foundation of China (49874021).
文摘Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
基金supported by grants from the National Natural Science Foundation of China(No.40104003)China Post-doctoral Science Foundationthe Chinese Academy of Sciences K.C.Wong Post-doctoral Research Award
文摘On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China.
基金supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China (2006BAC01B04)Joint Seismological Science Foundation of China (106023)Contribution No. is 09FE3006 of Institute of Geophysics,China Earthquake Administration
文摘The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust.
基金Climb Project Continental Dynamics of East Asia and Joint Seismological Science Foundation of China (9507413).
文摘Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.
基金supported by National Natural Science Foundation of China (No. 41574047)Sichuan–Yunnan national earthquake monitoring and prediction experimental field project (2016CESE0101, 2018CSES0209)Project of Science for Earthquake Resilience (XH202302)
文摘In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utilized the seismic phase data both from a local dense array and from the regional seismic networks;we used the tomoDD program to invert for the high-resolution three-dimensional velocity structure within the depth range of 0–10 km and for accurate hypocentral locations in this area. We analyzed the seismogenic structures for the events of Xingwen M5.7 in 2018 and Gongxian M5.3 and Changning M6.0 in 2019. The results show that:(1) widespread lateral inhomogeneity exists in the velocity structure of the study area, and the location of the velocity anomaly is largely consistent with known structures. In the range of distinguishable depth, the inhomogeneity decreases with increasing depth, and the velocity structure anomalies in some areas are continuous in depth;(2) earthquakes occurred in clusters, showing the characteristics of zonal folding trends in the NW-SE and NE-SW directions;the focal depth in the area is generally shallow in both the sedimentary cap and the crystalline basement. The seismogenic structures of small earthquake clusters are different in size and occurrence in different sections, and the clusters occurred mostly in regions with high P-or S-wave velocities;(3) synthesis of a variety of data suggests that the seismogenic structures of the Xingwen M5.7 and Changning M6.0 earthquakes are associated with slip faults that trend NW-SE in, respectively, the south wing and the axis of the Changning–Shuanghe anticline, while that of the Gongxian M5.3 earthquake is associated with thrust faults that trend N-S in the Jianwu syncline region. The dynamic sources of the three earthquakes are all from the SE pushing of the Qinghai–Tibet block on the Sichuan basin;(4) the risk of future strong earthquakes in this area must be reevaluated in light of the facts(a)that in recent years, moderate-to-strong earthquake swarms have occurred frequently in southeast Sichuan;(b) that the complex structural area exhibits the easy-to-trigger characteristic, and(c) that the small-scale faults in this area are characterized by the phenomenon of stress "lock and release".
基金the National Key R&D Program of China(No.2016YFC0600301)the National Natural Science Foundation of China.(No.41974053).
文摘The Longmenshan fault zone(LMSF),characterized by complex structures and strong seismicity,is located at the junction between the eastern margin of the Tibetan Plateau and the north-western Sichuan basin.Since the Wenchuan earthquake on May 12,2008,abundant studies of the formation mechanism of earthquakes along the LMSF were performed.In this study,a short-period dense seismic array deployed across the LMSF was applied by ambient noise tomography.Fifty-two 3-D seismic instruments were used for data acquisition for 26 days.We calculated the empirical Green's functions(EGFs)between different station-pairs and extracted 776 Rayleigh-wave dispersion curves between 2 and 7 s.And then,we used the direct-inversion method to obtain the fine shallow crustal S-wave velocity structure within 6 km depth in the middle section of the Longmenshan fault zone and nearby areas.Our results show that the sedimentary layer(>5 km)exists in the northwest margin of Sichuan Basin with a low S-wave velocity(~1.5-2.5 km/s)which is much thicker than that beneath the Longmenshan fault zone and the Songpan-Garze block.The high-velocity structures with clear boundaries below the middle of Longmenshan fault zone(~2-4 km)and the Songpan-Garze block(~4.5-6 km)probably reveal the NW-SE distribution patterns of both the Pengguan complex and the high-density belt hidden in the northwest of the Pengguan complex.And the obviously high-velocity anomalies observed at the depth of^1-2 km in the southeastern margin of the Songpan-Garze block can be considered as the Laojungou granites.Our results provide a high-resolution shallow velocity structure for detailed studies of the Longmenshan fault zone.
基金funded by the general project of National Natural Science Foundation of China(No.41774072).
文摘A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes.
基金supported by the Research Project of Tianjin Earthquake Agency (No. Yb202101, Zd202101)
文摘In this study,based on the body wave arrival data of 5506 earthquakes recorded by 32 fi xed stations and 94 temporary stations in Yangbi and surrounding areas,the source parameters of Yangbi Ms6.4 earthquake sequence and three-dimensional(3-D)fi ne Vp,Vs,and Vp/Vs were inverted by using the consistency-constrained double-diff erence tomography method.The results showed that the focal depth after relocation was mostly in the range of 3–10 km,evidently nearly horizontally distributed,and concentrated in the weak area of the high-velocity body or at the side of the high-low-velocity body transition zone toward the high-velocity body,showing a good corresponding relationship with the velocity structure.The velocity structure in the Yangbi area has remarkably uneven characteristics.The seismic activity area is dominated by high-velocity bodies prone to brittle fracture near the surface.As the depth increases,low-velocity anomalies appear.A signifi cant diff erence was observed in the wave velocity ratio between the upper and lower sides of the seismically dense strip.Based on the focal mechanism of the Yangbi Ms6.4 earthquake and the fine 3-D velocity structure,this article concludes that the Yangbi Ms6.4 earthquake was caused by a strong regional tectonic stress concentrated in the relatively weak area by hard high-velocity bodies on the northwest sides.The Ms5.6 foreshock broke the inherent balance of regional stress and promoted the occurrence of the Yangbi Ms6.4 mainshock.Afterward,the stress was adjusted to a new equilibrium state through a large number of aftershocks,forming a foreshock–mainshock–aftershock type of seismic activity model.Based on the activity law of the Yangbi Ms6.4 earthquake sequence and characteristics of the 3D velocity structure distribution,this paper speculates that the seismogenic structure of the Yangbi earthquake was possibly a northwest strike-slip buried fault with a depth of 3–10 km on the southwest side of the Weixi–Qiaohou fault.
基金supported by the China Spark Program(No.XH17055Y)the National Natural Science Foundation of China(No.41574084)
文摘Determining the shallow structure of a sediment basin is important when evaluating potential seismic hazards given that such basins can significantly amplify seismic energy. The Luoyang basin is located in the western He’nan uplift and is a Meso-Cenozoic depression basin. To characterize the shallow structure of the basin, we develop a model of the shallow high-resolution three-dimensional(3D)shear-wave velocity structure of the basin by applying ambient noise tomography to a dense array of 107 portable digital seismometers deployed over the basin. More than 1,400 Rayleigh-wave dispersion curves for periods in the range 0.5–5 s are extracted. The 3D variations of shear-wave velocity in the shallow crust are inverted using a direct surface-wave tomographic method with period-dependent ray tracing, with all the surface-wave group-velocity dispersion data being inverted simultaneously. The results show that in the shallow crust of the study area, the velocity distribution corresponds to surface geology and geological features. The Luoyang basin exhibits a low shear-wave velocity feature that is consistent with the distribution of sediment in the region,while the Xiongershan and Songshan uplifts exhibit higher shear-wave velocity structures. The results provide a shallow high-resolution 3D velocity model that can be used as a basis for simulation of strong ground motion and evaluation of potential seismic hazards.
基金funded by grants from the Key Project of the National Natural Science Foundation of China(No.41630320)the National Key Research and Development Program of China(No.2016YFC0600200)the Hefei Postdoctoral Science Foundation。
文摘In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to intrude the upper crustal UHP metamorphic rocks,forming the'sandwich'velocity structure there;(3)high-velocity updoming is widespread in the crust-mantle transition zone beneath the MLYB.From the Anqing-Guichi ore field northeastward to the Luzong,Tongling,Ningwu and Ningzhen orefields,high-velocity anomalies in the crust-mantle transition zone increase rapidly in size and are widely distributed.The updoming also exists in the crust-mantle transition zone beneath the Jiurui and Edongnan orefields,but the high-velocity anomalies are mainly stellate distributed.The updoming high-velocity zone beneath the MLYB generally extends from the crust-mantle transition zone to the middle crust,different from the velocity structure in the upper crust.The upper crust beneath the Early Cretaceous extension-related Luzong and Ningwu volcanic basins is characterized by high velocity zones,in contrast to the low velocity anomalies beneath the Late Jurassic to Early Cretaceous compression-related Tongling ore field.The MLYB may have undergone a compressive-to-extensional transition during the Yanshanian(Jurassic-Cretaceous)period,during which extensive magmatism occurred.The near mantle-crustal boundary updoming was likely caused by asthenospheric underplating at the base of the lower crust.The magmas may have ascended through major crustal faults,undergoing AFC(assimilation and fractional crystallization)processes,became emplaced in the fault-bounded basins or Paleozoic sequences,eventually forming the many Cu-Fe polymetallic deposits there.
基金Climbing Project Continental Dynamics of East Asia (95-S-05) from Ministry of Science and Technology, P. R. China.
文摘A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was deter-mined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the com-plicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.
基金The study (Project No. 85078) was supported by the Joint Foundation of Seismic Science.
文摘3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.
基金supported by a National Natural Science Foundation of China (Grant No. 41374097)China National Special Fund for Earthquake Scientific Research in Public Interest (Grant No. 201008001)
文摘We use observations recorded by 23 permanent and 99 temporary stations in the SE Tibetan plateau to obtain the S-wave velocity structure along two profiles by applying joint inversion with receiver functions and surface waves. The two profiles cross West Yunnan block (WYB), the Central Yunnan sub-block (CYB), South China block (SCB), and Nanpanjiang basin (NPB). The profile at -25°N shows that the Moho interface in the CYB is deeper than those in the WYB and the NPB, and the topography and Moho depth have clear correspondence. Beneath the Xiaojiang fault zone (XJF), there exists a crustal low-velocity zone (LYZ), crossing the XJF and expanding eastward into the SCB. The NPB is shown to be of relatively high velocity. We speculate that the eastward extrusion of the Tibetan plateau may pass through the XJF and affect its eastern region, and is resisted by the rigid NPB, which has high velocity. This may be the main cause of the crustal thickening and uplift of the topography. In the Tengchong volcanic area, the crust is shown to have alternate high- and low-velocity layers, and the upper mantle is shown to be of low velocity. We consider that the magma which exists in the crust is from the upper mantle and that the complex crustal velocity structure is related to magmatic differentiation. Between the Tengchong volcanic area and the XJF, the crustal velocity is relatively high. Combining these observations with other geophysical evi- dence, it is indicated that rock strength is high and defor- mation is weak in this area, which is why the level of seismicity is quite low. The profile at ~ 23~N shows that the variation of the Moho depth is small from the eastern rigid block to the western active block with a wide range of LVZs. We consider that deformation to the south of the SE Tibetan Plateau is weak.