Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matl...Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.展开更多
<span style="font-family:Verdana;">Plank quantum and classical string energy relations seem to be uncorrelated. This work correlated them. The relativistic energy-momentum relation has been used togeth...<span style="font-family:Verdana;">Plank quantum and classical string energy relations seem to be uncorrelated. This work correlated them. The relativistic energy-momentum relation has been used together with plank and de Brogglie hypothesis to prove that the wave group velocity is equal to the particle velocity in both ordinary and curved space. The plank energy relation is shown also to be related to the classical energy relation of an oscillating string. Starting from plank energy relation for n photons and performing integration, the expression of classical string energy was obtained. This means that one can treat electromagnetic waves as a collection of continuous photons having frequencies ranging from zero to w. Conversely, starting from classical string energy relation by differentiating it with respect to angular frequency, the plank quantum energy for n photons has been found. This means that the quanta results from separation of electromagnetic waves to single isolated waves. Each wave consists of n photons or quanta.</span>展开更多
A conformal multi-resolution time-domain( CMRTD) method is presented for modeling curved objects. The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The backward sca...A conformal multi-resolution time-domain( CMRTD) method is presented for modeling curved objects. The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The backward scattering bistatic radar cross sections( RCS) of the dielectric cylinder and ellipsoid are used to validate the proposed method. The results show that the proposed conformal method is more accurate to deal with the complex curved objects in electromagnetic simulations.展开更多
To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE met...To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.展开更多
A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account th...A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account the energy conversion of the foil explosion,the power-time curve is applied to the hydrodynamic code.One-dimensional numerical simulations of electric-explosion driving flyers are performed using this code.Calculated flyer velocities lie within ±8% of experimental data from Lawrence Livermore National Laboratory (LLNL),and simulated history curves of flyer velocities coincide well with those measured using velocity interferometer system for any reflector (VISAR),indicating a helpful work for design optimization of slapper detonators.展开更多
This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techni...This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techniques. Based on the microgeology and thin section analyses, the lithology, lithofacies and periods of the Permian igneous rocks are described in detail. The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume. The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data. Through analysis of thin sections, the lithofacies can be classified into eruption airfall subfacies, eruption pyroclastic flow subfacies and eruption facies.展开更多
In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity st...In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.展开更多
It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations...It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.展开更多
Estimation of good velocity models under complex near-surface conditions remains a topic of ongoing research.We propose to predict near-surface velocity profiles from surface-waves transformed to phase velocity-freque...Estimation of good velocity models under complex near-surface conditions remains a topic of ongoing research.We propose to predict near-surface velocity profiles from surface-waves transformed to phase velocity-frequency panels in a data-driven manner using deep neural networks.This is a different approach from many recent works that attempt to estimate velocity from directly reflected body waves or guided waves.A secondary objective is to analyze the influence on the prediction accuracy of various commonly employed deep learning practices,such as transfer learning and data augmentations.Through numerical experiments on synthetic data as well as a real geophysical example,we demonstrate that transfer learning as well as data augmentations are helpful when using deep learning for velocity estimation.A third and final objective is to study lack of generalization of deep learning models for out-of-distribution(OOD)data in the context of our problem,and present a novel approach to tackle it.We propose a domain adaptation network for training deep learning models that uses a priori knowledge on the range of velocity values in order to constrain mapping of the output.The final comparison on field data,which was not part of the training data,show the deep neural network predictions compare favorably with a conventional velocity model estimation obtained with a dispersion curve inversion workflow.展开更多
基金supported by the International S&T Cooperation Program of China(GrantNo.2010DFB43660)National Natural Science Foundation of China(Grant No.51375286)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.16JF005)
文摘Traditionally, basis weight control valve is driven by a constant frequency pulse signal. Therefore, it is difficult for the valve to match the control precision of basis weight. Dynamic simulation research using Matlab/Simulink indicates that there is much more overshoot and fluctuating during the valve-positioning process. In order to improve the valve-positioning precision, the control method of trapezoidal velocity curve was studied. The simulation result showed that the positioning steady-state error was less than 0.0056%, whereas the peak error was less than 0.016% by using trapezoidal velocity curve at 10 positioning steps. A valve-positioning precision experimental device for the stepper motor of basis weight control valve was developed. The experiment results showed that the error ratio of 1/10000 positioning steps was 4% by using trapezoidal velocity curve. Furthermore, the error ratio of 10/10000 positioning steps was 0.5%. It proved that the valve-positioning precision of trapezoidal velocity curve was much higher than that of the constant frequency pulse signal control strategy. The new control method of trapezoidal velocity curve can satisfy the precision requirement of 10000 steps.
文摘<span style="font-family:Verdana;">Plank quantum and classical string energy relations seem to be uncorrelated. This work correlated them. The relativistic energy-momentum relation has been used together with plank and de Brogglie hypothesis to prove that the wave group velocity is equal to the particle velocity in both ordinary and curved space. The plank energy relation is shown also to be related to the classical energy relation of an oscillating string. Starting from plank energy relation for n photons and performing integration, the expression of classical string energy was obtained. This means that one can treat electromagnetic waves as a collection of continuous photons having frequencies ranging from zero to w. Conversely, starting from classical string energy relation by differentiating it with respect to angular frequency, the plank quantum energy for n photons has been found. This means that the quanta results from separation of electromagnetic waves to single isolated waves. Each wave consists of n photons or quanta.</span>
基金Supported by the National Natural Science Foundation of China(61172024)the Funding of Jiangsu Innovation Program for Graduate Education and the Fundamental Research Funds for the Central Universities(CXZZ12-0156)
文摘A conformal multi-resolution time-domain( CMRTD) method is presented for modeling curved objects. The effective dielectric constant and area weighting are used to derive the update equations of CMRTD. The backward scattering bistatic radar cross sections( RCS) of the dielectric cylinder and ellipsoid are used to validate the proposed method. The results show that the proposed conformal method is more accurate to deal with the complex curved objects in electromagnetic simulations.
基金Project supported by the National Natural Science Foundation of China(Grant No.51025622)
文摘To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.
基金Sponsored by the National Basic Research Program of China ("973"Program)
文摘A theoretical model for calculating electric-power curves of small-size foil during its electrical explosion is given.This technique is based on temperature dependence of foil conductivity.After taking into account the energy conversion of the foil explosion,the power-time curve is applied to the hydrodynamic code.One-dimensional numerical simulations of electric-explosion driving flyers are performed using this code.Calculated flyer velocities lie within ±8% of experimental data from Lawrence Livermore National Laboratory (LLNL),and simulated history curves of flyer velocities coincide well with those measured using velocity interferometer system for any reflector (VISAR),indicating a helpful work for design optimization of slapper detonators.
基金A Project Funded by National Science and Technology Major Project (2011ZX05001-002-003)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)Key Laboratory for Coalbed Methane Resources and Reservoir formation Process, CUMT, Ministry of Education, China
文摘This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techniques. Based on the microgeology and thin section analyses, the lithology, lithofacies and periods of the Permian igneous rocks are described in detail. The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume. The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data. Through analysis of thin sections, the lithofacies can be classified into eruption airfall subfacies, eruption pyroclastic flow subfacies and eruption facies.
基金supported by Special R&D Fund of Seismological Industry (200808067)Spark Program of Earthquake Science (XH1016Y),China
文摘In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.
基金supported by the National Natural Science Foundation of China (Grant No. 40774099, 10874202 and 11134011)National 863 Program of China (Grant No. 2008AA06Z205)
文摘It is still argued whether we measure phase or group velocities using acoustic logging tools. In this paper, three kinds of models are used to investigate this problem by theoretical analyses and numerical simulations. First, we use the plane-wave superposition model containing two plane waves with different velocities and able to change the values of phase velocity and group velocity. The numerical results show that whether phase velocity is higher or lower than group velocity, using the slowness-time coherence (STC) method we can only get phase velocities. Second, according to the results of the dispersion analysis and branch-cut integration, in a rigid boundary borehole model the results of dispersion curves and the waveforms of the first-order mode show that the velocities obtained by the STC method are phase velocities while group velocities obtained by arrival time picking. Finally, dipole logging in a slow formation model is investigated using dispersion analysis and real-axis integration. The results of dispersion curves and full wave trains show similar conclusions as the borehole model with rigid boundary conditions.
文摘Estimation of good velocity models under complex near-surface conditions remains a topic of ongoing research.We propose to predict near-surface velocity profiles from surface-waves transformed to phase velocity-frequency panels in a data-driven manner using deep neural networks.This is a different approach from many recent works that attempt to estimate velocity from directly reflected body waves or guided waves.A secondary objective is to analyze the influence on the prediction accuracy of various commonly employed deep learning practices,such as transfer learning and data augmentations.Through numerical experiments on synthetic data as well as a real geophysical example,we demonstrate that transfer learning as well as data augmentations are helpful when using deep learning for velocity estimation.A third and final objective is to study lack of generalization of deep learning models for out-of-distribution(OOD)data in the context of our problem,and present a novel approach to tackle it.We propose a domain adaptation network for training deep learning models that uses a priori knowledge on the range of velocity values in order to constrain mapping of the output.The final comparison on field data,which was not part of the training data,show the deep neural network predictions compare favorably with a conventional velocity model estimation obtained with a dispersion curve inversion workflow.