以中尺度非静力WRF模式的格点预报结果作为云模式的初值集合,经云模式的多初值雷暴预报及预报结果的集合分析,建立了雷暴云的集合预报方法。将该方法应用于南京周边地区未来一天雷暴天气的特征预报,并利用南京夏季9个雷暴天气的多普勒...以中尺度非静力WRF模式的格点预报结果作为云模式的初值集合,经云模式的多初值雷暴预报及预报结果的集合分析,建立了雷暴云的集合预报方法。将该方法应用于南京周边地区未来一天雷暴天气的特征预报,并利用南京夏季9个雷暴天气的多普勒雷达资料(SCIT,storm cell identification and tracking)进行预报效果的检验。结果表明,雷暴云的集合预报对研究区域内未来一天雷暴强度、分布预报效果较好,尤其对强雷暴的分布有较强的预警预测能力。此外,雷暴持续时间概率密度分布的集合预报产品,在雷暴影响范围概率预报上的应用,提高了雷达对雷暴的预警监测能力。展开更多
改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法。根据奇异向量与经验正交函数(empirical orthogonal function,EOF)...改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法。根据奇异向量与经验正交函数(empirical orthogonal function,EOF)的关系,给出了格、站点网资料SVD方法中均匀化订正的方法,进而得到了改进的奇异值分解(ASVD)方法。将ASVD方法、SVD方法用于中国60a(1951—2010年)160站冬季气温、降水同期相关系数矩阵C的分析,结果表明:ASVD方法的前4个主要模态的模方拟合率和累积模方拟合率均明显高于SVD方法;ASVD方法前两个奇异向量典型场图上高绝对值区与C模方图上高值区的关系明显较SVD方法合理。由此论证了SVD方法中资料均匀化订正的必要性,验证了实际分析中ASVD方法的效果。展开更多
For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm c...For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.展开更多
文摘以中尺度非静力WRF模式的格点预报结果作为云模式的初值集合,经云模式的多初值雷暴预报及预报结果的集合分析,建立了雷暴云的集合预报方法。将该方法应用于南京周边地区未来一天雷暴天气的特征预报,并利用南京夏季9个雷暴天气的多普勒雷达资料(SCIT,storm cell identification and tracking)进行预报效果的检验。结果表明,雷暴云的集合预报对研究区域内未来一天雷暴强度、分布预报效果较好,尤其对强雷暴的分布有较强的预警预测能力。此外,雷暴持续时间概率密度分布的集合预报产品,在雷暴影响范围概率预报上的应用,提高了雷达对雷暴的预警监测能力。
文摘改进的奇异值分解(advanced singular value decomposition,ASVD)方法,是对经过空间均匀化订正的格、站点网资料的奇异值分解(singular value decomposition,SVD)方法。根据奇异向量与经验正交函数(empirical orthogonal function,EOF)的关系,给出了格、站点网资料SVD方法中均匀化订正的方法,进而得到了改进的奇异值分解(ASVD)方法。将ASVD方法、SVD方法用于中国60a(1951—2010年)160站冬季气温、降水同期相关系数矩阵C的分析,结果表明:ASVD方法的前4个主要模态的模方拟合率和累积模方拟合率均明显高于SVD方法;ASVD方法前两个奇异向量典型场图上高绝对值区与C模方图上高值区的关系明显较SVD方法合理。由此论证了SVD方法中资料均匀化订正的必要性,验证了实际分析中ASVD方法的效果。
基金Supported by the National High Technology Research and Development Programme of China ( No. 2004AA001210) and the National Natural Science Foundation of China (No. 60532030).
文摘For the application of wireless sensor networks in the military field, one of the main challenges is security. To solve the problem of verifying the location claim for a node, a new location verifica- tion algorithm called node cooperation based location secure verification (NCBLSV) algorithm is proposed. NCBLSV could verify malicious nodes by contrasting neighbor nodes and nodes under beam width angle using an adaptive array antenna at a base point. Simulation experiments are con- ducted to evaluate the performance of this algorithm by varying the communication range and the an- tenna beam width angle. Results show that NCBLSV algorithm has high probability of successful ma- licious nodes detection and low probability of false nodes detection. Thus, it is proved that the NCBLSV algorithm is useful and necessary in the wireless sensor networks security.