The goal of this paper is to present a versatile framework for solution verification of PDE's. We first generalize the Richardson Extrapolation technique to an optimized extrapolation solution procedure that construc...The goal of this paper is to present a versatile framework for solution verification of PDE's. We first generalize the Richardson Extrapolation technique to an optimized extrapolation solution procedure that constructs the best consistent solution from a set of two or three coarse grid solution in the discrete norm of choice. This technique generalizes the Least Square Extrapolation method introduced by one of the author and W. Shyy. We second establish the conditioning number of the problem in a reduced space that approximates the main feature of the numerical solution thanks to a sensitivity analysis. Overall our method produces an a posteriori error estimation in this reduced space of approximation. The key feature of our method is that our construction does not require an internal knowledge of the software neither the source code that produces the solution to be verified. It can be applied in principle as a postprocessing procedure to off the shelf commercial code. We demonstrate the robustness of our method with two steady problems that are separately an incompressible back step flow test case and a heat transfer problem for a battery. Our error estimate might be ultimately verified with a near by manufactured solution. While our pro- cedure is systematic and requires numerous computation of residuals, one can take advantage of distributed computing to get quickly the error estimate.展开更多
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation(LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 3...This study evaluates the recently developed general framework for solution verification methods for large eddy simulation(LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids.The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark(S_C), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes(RANS) based error estimation method is applied, it shows significant error in the prediction of S_C on coarse meshes. However, it predicts reasonable S_C when the grids resolve at least 80% of the total turbulent kinetic energy.展开更多
基金Sandia Nat.Lab.Sandia is a multiprogram laboratory operated by Sandia Corporation,a Lockheed Martin Company,for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000
文摘The goal of this paper is to present a versatile framework for solution verification of PDE's. We first generalize the Richardson Extrapolation technique to an optimized extrapolation solution procedure that constructs the best consistent solution from a set of two or three coarse grid solution in the discrete norm of choice. This technique generalizes the Least Square Extrapolation method introduced by one of the author and W. Shyy. We second establish the conditioning number of the problem in a reduced space that approximates the main feature of the numerical solution thanks to a sensitivity analysis. Overall our method produces an a posteriori error estimation in this reduced space of approximation. The key feature of our method is that our construction does not require an internal knowledge of the software neither the source code that produces the solution to be verified. It can be applied in principle as a postprocessing procedure to off the shelf commercial code. We demonstrate the robustness of our method with two steady problems that are separately an incompressible back step flow test case and a heat transfer problem for a battery. Our error estimate might be ultimately verified with a near by manufactured solution. While our pro- cedure is systematic and requires numerous computation of residuals, one can take advantage of distributed computing to get quickly the error estimate.
文摘This study evaluates the recently developed general framework for solution verification methods for large eddy simulation(LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids.The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark(S_C), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes(RANS) based error estimation method is applied, it shows significant error in the prediction of S_C on coarse meshes. However, it predicts reasonable S_C when the grids resolve at least 80% of the total turbulent kinetic energy.