期刊文献+
共找到376篇文章
< 1 2 19 >
每页显示 20 50 100
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
1
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 GRAPH complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4
2
作者 CHEN XIANG-EN HE WEN-YU +2 位作者 LI ZE-PENG YAO BING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i... Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. 展开更多
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs 被引量:5
3
作者 XIN Xiao-qing CHEN Xiang-en WANG Zhi-wen 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期92-97,共6页
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi... Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. 展开更多
关键词 GRAPHS VE-total coloring vertex-distinguishing VE-total coloring vertexdistinguishing VE-total chromatic number
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
4
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
5
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Adjacent Vertex Distinguishing I-total Coloring of Outerplanar Graphs
6
作者 GUO Jing CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2017年第4期382-394,共13页
Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent ... Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at^i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs. 展开更多
关键词 adjacent vertex distinguishing -total coloring outerplanar graphs maximum degree
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
7
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER TOTAL COLORING vertex-distinguishing TOTAL COLORING vertex-distinguishing TOTAL chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
8
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 Adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
An Upper Bound for the Adjacent Vertex-Distinguishing Total Chromatic Number of a Graph 被引量:17
9
作者 LIU Xin Sheng AN Ming Qiang GAO Yang 《Journal of Mathematical Research and Exposition》 CSCD 2009年第2期343-348,共6页
Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw... Let G = (V, E) be a simple connected graph, and |V(G)| ≥ 2. Let f be a mapping from V(G) ∪ E(G) to {1,2…, k}. If arbitary uv ∈ E(G),f(u) ≠ f(v),f(u) ≠ f(uv),f(v) ≠ f(uv); arbitary uv, uw ∈ E(G)(v ≠ w), f(uv) ≠ f(uw);arbitary uv ∈ E(G) and u ≠ v, C(u) ≠ C(v), whereC(u)={f(u)}∪{f(uv)|uv∈E(G)}.Then f is called a k-adjacent-vertex-distinguishing-proper-total coloring of the graph G(k-AVDTC of G for short). The number min{k|k-AVDTC of G} is called the adjacent vertex-distinguishing total chromatic number and denoted by χat(G). In this paper we prove that if △(G) is at least a particular constant and δ ≥32√△ln△, then χat(G) ≤ △(G) + 10^26 + 2√△ln△. 展开更多
关键词 total coloring adjacent vertex distinguishing total coloring adjacent vertex distinguishing total chromatic number Lovasz local lemma.
下载PDF
Vertex Distinguishing Equitable Total Chromatic Number of Join Graph 被引量:5
10
作者 Zhi-wen Wang Li-hong Yan Zhong-fuZhang 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2007年第3期433-438,共6页
A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any... A vertex distinguishing equitable total coloring of graph G is a proper total coloring of graph G such that any two distinct vertices' coloring sets are not identical and the difference of the elements colored by any two colors is not more than 1. In this paper we shall give vertex distinguishing equitable total chromatic number of join graphs Pn VPn, Cn VCn and prove that they satisfy conjecture 3, namely, the chromatic numbers of vertex distinguishing total and vertex distinguishing equitable total are the same for join graphs Pn V Pn and Cn ∨ Cn. 展开更多
关键词 PATH CYCLE join graph vertex distinguishing equitable total chromatic number
原文传递
A Note on Adjacent-Vertex-Distinguishing Total Chromatic Numbers for P_m × P_n,P_m × C_n and C_m × C_n 被引量:1
11
作者 陈祥恩 张忠辅 孙宜蓉 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2008年第4期789-798,共10页
Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E... Let G be a simple graph. Let f be a mapping from V (G) ∪ E(G) to {1,2,...,k}. Let Cf(v) = {f(v)} ∪ {f(vw)|w ∈ V (G),vw ∈ E(G)} for every v ∈ V (G). If f is a k-proper- total-coloring, and for u,v ∈ V (G),uv ∈ E(G), we have Cf(u) = Cf(v), then f is called a k- adjacent-vertex-distinguishing total coloring (k-AV DTC for short). Let χat(G) = min{k|G have a k-adjacent-vertex-distinguishing total coloring}. Then χat(G) is called the adjacent-vertex- distinguishing total chromatic number (AV DTC number for short)... 展开更多
关键词 total coloring adjacent-vertex-distinguishing total coloring adjacent-vertex-distinguishing total chromatic number.
下载PDF
两类3-正则Halin图的邻点可区别Ⅰ-全染色 被引量:3
12
作者 杨随义 何万生 何建伟 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第12期98-102,共5页
应用构造具体染色的方法给出了两类3-正则Halin图的邻点可区别Ⅰ-全色数.
关键词 -全染色 邻点可区别-全染色 邻点可区别-全色数
下载PDF
冠图C_m·F_n、C_m·S_n与C_m·W_n的邻点可区别Ⅰ-全染色 被引量:5
13
作者 杨随义 杨晓亚 何万生 《兰州理工大学学报》 CAS 北大核心 2011年第6期154-156,共3页
图G的I-全染色是指若干种颜色对图G的顶点和边的一个分配,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.在图G的一个I-全染色下,G的任意一个点的色集合是指该点的颜色以及与该点相关联的全体边的颜色构成的集合.图G的一... 图G的I-全染色是指若干种颜色对图G的顶点和边的一个分配,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.在图G的一个I-全染色下,G的任意一个点的色集合是指该点的颜色以及与该点相关联的全体边的颜色构成的集合.图G的一个I-全染色称为是邻点可区别的,如果任意两个相邻点的色集合不相等.对一个图G进行邻点可区别I-全染色所用的最少颜色的数目称为图G的邻点可区别I-全色数.应用构造具体染色的方法给出冠图Cm.Fn、Cm.Sn及Cm.Wn的邻点可区别I-全色数. 展开更多
关键词 I-全染色 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
若干Mycielski图邻点可区别Ⅰ-均匀全染色 被引量:7
14
作者 张婷 朱恩强 +1 位作者 赵双柱 杜佳 《大连理工大学学报》 EI CAS CSCD 北大核心 2018年第5期547-550,共4页
图G的一个邻点可区别Ⅰ-均匀全染色是指对图G的邻点可区别的一个Ⅰ-全染色f,若f还满足||T_i|-|T_j||≤1(i≠j),其中T_i=V_i∪E_i={v|v∈V(G),f(v)=i}∪{e|e∈E(G),f(e)=i},则称f为图G的一个邻点可区别Ⅰ-均匀全染色,而图G的邻点可区别Ⅰ... 图G的一个邻点可区别Ⅰ-均匀全染色是指对图G的邻点可区别的一个Ⅰ-全染色f,若f还满足||T_i|-|T_j||≤1(i≠j),其中T_i=V_i∪E_i={v|v∈V(G),f(v)=i}∪{e|e∈E(G),f(e)=i},则称f为图G的一个邻点可区别Ⅰ-均匀全染色,而图G的邻点可区别Ⅰ-均匀全染色中所用的最少颜色数称为图G的邻点可区别Ⅰ-均匀全色数.通过函数构造法,得到了M(Pn)、M(Cn)、M(Sn)的邻点可区别Ⅰ-均匀全色数,并且满足猜想. 展开更多
关键词 MYCIELSKI图 邻点可区别-均匀全染色 邻点可区别-均匀全色数
下载PDF
一类仙人掌图的D(2)-点可区别全染色
15
作者 汪银芳 李沐春 王国兴 《吉林大学学报(理学版)》 CAS 北大核心 2024年第1期1-6,共6页
用数学归纳法和组合分析法给出最大度为3的仙人掌图G T的D(2)-点可区别全染色,进而得到χ_(2vt)(G T)≤6.结果表明,D(β)-VDTC猜想对最大度为3的仙人掌图成立.
关键词 仙人掌图 D(2)-点可区别全染色 D(2)-点可区别全色数
下载PDF
冠图C_m·S_n和C_m·P_n的邻点可区别Ⅰ-全色数 被引量:5
16
作者 田京京 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期25-28,共4页
根据冠图Cm.Sn和Cm.Pn的结构性质,用穷染递推的方法,讨论了Cm.Sn和Cm.Pn的邻点可区别Ⅰ-全染色,得到了相应的色数,并给出了具体的染色方案.
关键词 冠图 邻点可区别-全染色 邻点可区别-全色数
下载PDF
S_m∨F_n的邻点可区别Ⅰ-全染色及相关结论 被引量:2
17
作者 张婷 朱恩强 韩彩霞 《兰州文理学院学报(自然科学版)》 2016年第4期32-34,100,共4页
讨论了S_m∨F_n的邻点可区别Ⅰ-全染色,利用构造函数法,构造了一个从点边集V(G)∪E(G)到色集合{1,2,…,k}的函数,给出了S_m∨F_n的一种邻点可区别Ⅰ-全染色方案,得到了其邻点可区别Ⅰ-全色数.并在此种染色方法的基础上,通过适当调整S_m... 讨论了S_m∨F_n的邻点可区别Ⅰ-全染色,利用构造函数法,构造了一个从点边集V(G)∪E(G)到色集合{1,2,…,k}的函数,给出了S_m∨F_n的一种邻点可区别Ⅰ-全染色方案,得到了其邻点可区别Ⅰ-全色数.并在此种染色方法的基础上,通过适当调整S_m∨F_n的边及其染色,得到了S_m∨S_n,S_m∨W_n,F_m∨F_n的邻点可区别I-全色数,且满足猜想:χiat(G)≤Δ(G)+2. 展开更多
关键词 联图 邻点可区别的-全染色 邻点可区别-全色数
下载PDF
若干多重Mycielski图的邻点可区别Ⅰ-全色数 被引量:3
18
作者 田京京 《计算机工程与应用》 CSCD 2012年第25期39-41,60,共4页
根据路和星、圈的多重Mycielski图的结构性质,用穷染递推的方法,讨论了图Mn(Cm)和Mn(Pm),以及Mn(Sm)的邻点可区别I-全染色,得到了图Mn(Sm)和Mn(Pm)的邻点可区别I-全色数等于它们的最大度,图Mn(Cm)的邻点可区别I-全色数在m=4,5时等于它... 根据路和星、圈的多重Mycielski图的结构性质,用穷染递推的方法,讨论了图Mn(Cm)和Mn(Pm),以及Mn(Sm)的邻点可区别I-全染色,得到了图Mn(Sm)和Mn(Pm)的邻点可区别I-全色数等于它们的最大度,图Mn(Cm)的邻点可区别I-全色数在m=4,5时等于它的最大度加1,其余情况等于它的最大度,即分别给出图Mn(Sm)和Mn(Cm)、Mn(Pm)一种染色方案。 展开更多
关键词 多重Mycielski图 邻点可区别I-全染色 邻点可区别I-全色数
下载PDF
梯图的邻点可区别均匀Ⅰ-全染色
19
作者 王继顺 左林 李步军 《中北大学学报(自然科学版)》 CAS 2020年第5期389-393,共5页
图的邻点可区别Ⅰ-全染色是指对图的顶点和边染色,使得任意相邻两个顶点的颜色不同,任意相邻两条边的颜色不同,且对任意两个相邻顶点u,v,有C(u)≠C(v),C(u)指该顶点的颜色以及与该点相关联的全体边的颜色构成的集合.图的邻点可区别Ⅰ-... 图的邻点可区别Ⅰ-全染色是指对图的顶点和边染色,使得任意相邻两个顶点的颜色不同,任意相邻两条边的颜色不同,且对任意两个相邻顶点u,v,有C(u)≠C(v),C(u)指该顶点的颜色以及与该点相关联的全体边的颜色构成的集合.图的邻点可区别Ⅰ-全染色如果使得任意两种颜色所染元素数目相差不超过1,则称该染色法为图的邻点可区别均匀Ⅰ-全染色,其所用最少染色数称为图的邻点可区别均匀Ⅰ-全色数.讨论了梯图L_n的邻点可区别均匀Ⅰ-全染色问题,根据该类图的结构性质通过构造有序颜色组,运用循环染色法结合色调整技术,给出它们的邻点可区别均匀Ⅰ-全染色方法,从而有效地确定了其邻点可区别均匀Ⅰ-全色数. 展开更多
关键词 梯图 有序颜色组 邻点可区别均匀-全染色 邻点可区别均匀-全色数
下载PDF
若干路的冠图的邻点可区别Ⅰ-全染色
20
作者 刘秀丽 《中北大学学报(自然科学版)》 CAS 北大核心 2016年第5期461-464,469,共5页
研究了若干路的冠图P_n°P_m,P_n°Cm,P_n°Fm和P_n°W_m的邻点可区别的Ⅰ-全染色.图G的邻点可区别的Ⅰ-全染色是从G的点边集V(G)∪E(G)到色集{1,2,…,k}的一个映射f,满足:任意uv∈E(G),u≠v,有f(u)≠f(v);任意uv,uw∈E... 研究了若干路的冠图P_n°P_m,P_n°Cm,P_n°Fm和P_n°W_m的邻点可区别的Ⅰ-全染色.图G的邻点可区别的Ⅰ-全染色是从G的点边集V(G)∪E(G)到色集{1,2,…,k}的一个映射f,满足:任意uv∈E(G),u≠v,有f(u)≠f(v);任意uv,uw∈E(G),v≠w,有f(uv)≠f(uw);任意uv∈E(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G).最小的k值称为图G的邻点可区别的Ⅰ-全色数,记作χiat(G).根据路的冠图P_n°P_m,P_n°C_m,P_n°Fm和P_n°W_m的结构特征,利用构造映射法,构造了一个从集合V(G)∪E(G)到色集合{1,2,…,k}的映射,给出了一种染色方案,得到了它们的邻点可区别的Ⅰ-全色数. 展开更多
关键词 全染色 邻点可区别全染色 邻点可区别-全染色 邻点可区别-全色数 冠图
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部