期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Extension of Vertex Operator Algebra VH4(e, 0) 被引量:3
1
作者 Cuipo Jiang Song Wang 《Algebra Colloquium》 SCIE CSCD 2014年第3期361-380,共20页
We classify the irreducible restricted modules for the affine Nappi-Witten Lie algebra H4 with some natural conditions. It turns out that the representation theory of H4 is quite different from the theory of represent... We classify the irreducible restricted modules for the affine Nappi-Witten Lie algebra H4 with some natural conditions. It turns out that the representation theory of H4 is quite different from the theory of representations of Heisenberg algebras. We also study the extension of the vertex operator algebra VH4 (e, 0) by the even lattice L. We give the structure of the extension VH4 (e, 0) [L] and its irreducible modules via irreducible representations of VH4(e, 0) viewed as a vertex algebra. 展开更多
关键词 vertex operator algebra restricted module extension
原文传递
Bimodule and twisted representation of vertex operator algebras
2
作者 JIANG QiFen JIAO XiangYu 《Science China Mathematics》 SCIE CSCD 2016年第2期397-410,共14页
In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its... In this paper, for a vertex operator algebra V with an automorphism g of order T, an admissible V-module M and a fixed nonnegative rational number n ∈1/T Z_+, we construct an A_(g,n)(V)-bimodule Ag,n(M) and study its properties, discuss the connections between bimodule A_(g,n)(M) and intertwining operators. Especially, bimodule A _(g,n)-1T(M) is a natural quotient of A_(g,n)(M) and there is a linear isomorphism between the space IM^k M Mjof intertwining operators and the space of homomorphisms HomA_(g,n)(V)(A_(g,n)(M) A_(g,n)(V)M^j(s), M^k(t)) for s, t ≤ n, M^j, M^k are g-twisted V modules, if V is g-rational. 展开更多
关键词 BImodule g-twisted module vertex operator algebra intertwining operator fusion rules
原文传递
Representations and Fusion Rules for the Orbifold Vertex Operator Algebras L_(sl_(2))(k,0)^(Z_(3))
3
作者 Bing Wang 《Algebra Colloquium》 SCIE CSCD 2022年第2期241-264,共24页
For the cyclic group Z_(3)and a positive integer k,we study the representations of the orbifold vertex operator algebra L_(sl_(2))(k,0)^(Z_(3)).All the irreducible modules for L_(sl_(2))(k,0)^(Z_(3))are classified and... For the cyclic group Z_(3)and a positive integer k,we study the representations of the orbifold vertex operator algebra L_(sl_(2))(k,0)^(Z_(3)).All the irreducible modules for L_(sl_(2))(k,0)^(Z_(3))are classified and constructed explicitly.Quantum dimensions and fusion rules for L_(sl_(2))(k,0)^(Z_(3))are completely determined. 展开更多
关键词 orbifold vertex operator algebras irreducible modules fusion rules
原文传递
Bimodules associated to vertex operator superalgebras 被引量:1
4
作者 JIANG Wei JIANG CuiBo 《Science China Mathematics》 SCIE 2008年第9期1705-1725,共21页
Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-modul... Let V be a vertex operator superalgebra and m, n ∈ 1/2 ?+. We construct an A n (V)-A m (V)-bimodule A n,m (V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-module. We also construct the Verma type admissible V-module from an A m (V)-module by using bimodules 展开更多
关键词 vertex operator algebra admissible module vertex operator superalgebra associative algebra BImodule 17B69
原文传递
The Classification of Extensions of Lst3 (k, O)
5
作者 Chunrui Ai Xingjun Lin 《Algebra Colloquium》 SCIE CSCD 2017年第3期407-418,共12页
In this paper, rational extensions of affine vertex operator algebras Lsl3 (k, O) with k Institute of Mathematics, University of Tsukuba, Tsukuba, Japan Z+ are classified by modular invariants.
关键词 vertex operator algebra extension modular invariant
原文传递
Minimum Resolution of the Minkowski, Schwarzschild and Kerr Differential Modules
6
作者 J.-F. Pommaret 《Journal of Modern Physics》 2022年第4期620-670,共51页
Our recent arXiv preprints and published papers on the solution of the Riemann-Lanczos and Weyl-Lanczos problems have brought our attention on the importance of revisiting the algebraic structure of the Bianchi identi... Our recent arXiv preprints and published papers on the solution of the Riemann-Lanczos and Weyl-Lanczos problems have brought our attention on the importance of revisiting the algebraic structure of the Bianchi identities in Riemannian geometry. We also discovered in the meantime that, in our first GB book of 1978, we had already used a new way for studying the compatibility conditions (CC) of an operator that may not be necessarily formally integrable (FI) in order to construct canonical formally exact differential sequences on the jet level. The purpose of this paper is to prove that the combination of these two facts clearly shows the specific importance of the Spencer operator and the Spencer &delta;-cohomology, totally absent from mathematical physics today. The results obtained are unavoidable because they only depend on elementary combinatorics and diagram chasing. They also provide for the first time the purely intrinsic interpretation of the respective numbers of successive first, second, third and higher order generating CC. However, if they of course agree with the linearized Killing operator over the Minkowski metric, they largely disagree with recent publications on the respective numbers of generating CC for the linearized Killing operator over the Schwarzschild and Kerr metrics. Many similar examples are illustrating these new techniques, providing in particular a few resolutions in which the orders of the successive operators may go “up and down” surprisingly, like in the conformal situation for various dimensions. 展开更多
关键词 Formal Integrability Involutivity Compatibility Conditions Spencer operator Janet Sequence Spencer Sequence Differential module Homological algebra extension module
下载PDF
Representations of Code Vertex Operator Superalgebras
7
作者 Wei Jiang 《Algebra Colloquium》 SCIE CSCD 2015年第2期233-250,共18页
We study the representations of code vertex operator superalgebras resulting from a binary linear code which contains codewords of odd weight. We also show that there exists only one set of seven mutually orthogonal c... We study the representations of code vertex operator superalgebras resulting from a binary linear code which contains codewords of odd weight. We also show that there exists only one set of seven mutually orthogonal conformal vectors with central charge 1/2 in the Hamming code vertex operator superalgebra MH7. Phrthermore, we classify all the irreducible weak MH7-modules. 展开更多
关键词 vertex operator algebra irreducible module induced module code vertex operator superalgebra Hamming code
原文传递
构造相应于有限维非退化可解李代数的顶点代数 被引量:4
8
作者 王书琴 《数学物理学报(A辑)》 CSCD 北大核心 2006年第B12期1008-1024,共17页
设g是带有非退化不变对称双线性型的有限维可解李代数,该文首先应用g的仿射李代数g的表示理论,构造出一类水平为l的限制g-模Vg(l,0).然后应用顶点算子的局部理论在hom(Vg(l,0),Vg(l,0)((x)))中找到一类顶点代数LVg(l,0).建立了LVg(l,0... 设g是带有非退化不变对称双线性型的有限维可解李代数,该文首先应用g的仿射李代数g的表示理论,构造出一类水平为l的限制g-模Vg(l,0).然后应用顶点算子的局部理论在hom(Vg(l,0),Vg(l,0)((x)))中找到一类顶点代数LVg(l,0).建立了LVg(l,0)到Vg(l,0)的映射,最后证明了这类映射是顶点代数同构. 展开更多
关键词 非退化可解李代数的顶点代数 水平为l的限制g-摸 Jacobi-等式及弱交换性和D-导子-换位公式 顶点代数同构
下载PDF
李代数D_8到李代数E_8嵌入关系的顶点算子代数类似
9
作者 楚彦军 程俊芳 郑驻军 《暨南大学学报(自然科学与医学版)》 CAS CSCD 北大核心 2012年第1期1-6,33,共7页
Frenkel I,Lepowsky J,Meurman A利用E8-格的方法构造月光顶点算子代数.由此过程可知,D8格顶点算子代数到E8格顶点算子代数的嵌入关系是不平凡的,而且这种嵌入关系应用到共形场论中有困难.结合一些新发展的顶点代数理论,给出了顶点算子... Frenkel I,Lepowsky J,Meurman A利用E8-格的方法构造月光顶点算子代数.由此过程可知,D8格顶点算子代数到E8格顶点算子代数的嵌入关系是不平凡的,而且这种嵌入关系应用到共形场论中有困难.结合一些新发展的顶点代数理论,给出了顶点算子代数LD8(1,0)到顶点算子代数LE8(1,0)嵌入关系的一种实现.这也表明LE8(1,0)作为LD8(1,0)模,同构于LE8(1,0)由其单模LD8(1,ω珟8)的扩张.在此基础上,得到LD8(1,0)在LE8(1,0)中的commutant子代数是由真空向量生成的一维平凡子代数.我们希望这样的嵌入关系对理解与月光顶点算子代数的构造相关的嵌入关系有较大帮助. 展开更多
关键词 仿射李代数 顶点算子代数 顶点代数模 共形向量
下载PDF
顶点算子代数模范畴的Grothendick群(英文)
10
作者 楚彦军 程俊芳 《河南大学学报(自然科学版)》 CAS 北大核心 2013年第4期347-351,共5页
研究了顶点算子代数的模范畴,得到了顶点算子代数的模范畴的Grothendick群及其一些性质,这也为研究顶点算子代数和共形场论提供了一个重要的工具.
关键词 Grothendick群 顶点算子代数 顶点算子代数模
下载PDF
G_2型仿射-Virasoro李代数的顶点表示
11
作者 高寿兰 邹慧超 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期21-26,共6页
主要利用 Virasoro 李代数的振子表示及 G_2型仿射李代数的顶点算子,构造了 G_2型仿射-Virasoro 李代数的完全可约表示.
关键词 仿射-Virasoro李代数 顶点算子 完全可约模
下载PDF
顶点算子代数的模扩张 被引量:1
12
作者 高永存 《北京广播学院学报(自然科学版)》 2005年第3期20-22,共3页
设(V,Y,1,w)是一顶点算子代数,W是一Z分次V-模,令U=V W,对任何v,v′∈V,w,w′∈W,定义Yu(v,x)(v′+w)′=Y(v,x)v′+Yw(v,x)w′Yu(w,x)(v′+w′)=exDYw(v′,-x)w,其中D=L(-1),则在线性扩张下(U,Yu,1,w)是一顶点算子代数.
关键词 顶点算子代数 Jacobi等式
下载PDF
G_2型单代数群的单限制模的G_1-扩张
13
作者 胡余旺 彭帮琦 《信阳师范学院学报(自然科学版)》 CAS 2002年第2期158-161,共4页
设 G是特征 p的代数闭域 K上单连通半单代数群 ,G1 是第一次 Frobenius态射的核 ,即 G1 =Ker F.要确定单 G模的 G-扩张必须先确定限制单模的 G1 -扩张 .本文就是确定出特征 p=5的代数闭域 K上G2 型单代数群的所有单 G1
关键词 限制单模 Frobenius态射 单模扩张 代数群表示理论 扩张群
下载PDF
广义TKK代数的一类模结构
14
作者 李鸿萍 《莆田学院学报》 2012年第2期14-17,共4页
设S是欧氏空间R″(υ≥1)中最小的非格半格,在一个Jordan代数T(S)的基础上,通过Tits-Kantor-Koecher方法可构造TKK李代数g(T(S)),研究该李代数的泛中心扩张广义TKK代数g(T(S)),的一类在群代数与对称代数上的不可约表示。
关键词 TKK代数 JORDAN代数 顶点算子表示 FOCK空间 不可约模
下载PDF
相应于有限非退化李代数的顶点算子代数表示 被引量:1
15
作者 张敏 王书琴 《哈尔滨师范大学自然科学学报》 CAS 2008年第3期13-17,共5页
设g是有限维非退化李代数,g的极大环面子代数H在有限维g-模上的作用是可对角化的表示理论.在此基础上,本文论证了相应于g的顶点算子代数V■(l,0)表示的以下结果:顶点代数V■(l,0)—模与g的仿射李代数■的水平为l的限制模是一致的;对于... 设g是有限维非退化李代数,g的极大环面子代数H在有限维g-模上的作用是可对角化的表示理论.在此基础上,本文论证了相应于g的顶点算子代数V■(l,0)表示的以下结果:顶点代数V■(l,0)—模与g的仿射李代数■的水平为l的限制模是一致的;对于顶点算子代数的V■(l,0)不可分解模M,存在子模的合成列;给出了顶点算子代数V■(l,0)的不可约模的结构及分类. 展开更多
关键词 有限非退化李代数g的顶点算子代数Vg(l 0)的表示 顶点算子代数 Vg(l 0)-模仿射李代数鲁的限制模 模的合成列 不可约模
下载PDF
构造相应于有限维非退化李代数的顶点算子代数
16
作者 刘子杰 张晶 王书琴 《哈尔滨师范大学自然科学学报》 CAS 2007年第4期10-15,共6页
在相应于非退化李代数g的顶点代数的结构基础上构造顶点算子代数.为此,首先给出了非退化李代数g的Casimir算子Ω的定义,和在伴随表示下Ω作用在g上及相关性质;应用Ω定义出g的顶点代数V■(l,0)中元素,证明了V■(l,0)关于w构成一个顶点... 在相应于非退化李代数g的顶点代数的结构基础上构造顶点算子代数.为此,首先给出了非退化李代数g的Casimir算子Ω的定义,和在伴随表示下Ω作用在g上及相关性质;应用Ω定义出g的顶点代数V■(l,0)中元素,证明了V■(l,0)关于w构成一个顶点算子代数. 展开更多
关键词 仿射李代数 顶点算子代数 Casimir算子 Virasoro-向量
下载PDF
一类可解李代数的顶点代数的表示及子模结构
17
作者 崔瑶 王书琴 《哈尔滨师范大学自然科学学报》 CAS 2009年第3期8-11,共4页
设g是带有不变对称双线性型的有限维可解李代数,对其仿射李代数g^应用诱导模的方法来构造子模.证明了子模的合成列不仅存在,而且它是顶点代数gV^(l,0)的理想.
关键词 顶点(算子)代数模 水平为l的限制g^-模 子模的合成列
下载PDF
The Mathematical Foundations of General Relativity Revisited 被引量:2
18
作者 Jean-Francois Pommaret 《Journal of Modern Physics》 2013年第8期223-239,共17页
The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in ... The purpose of this paper is to present for the first time an elementary summary of a few recent results obtained through the application of the formal theory of partial differential equations and Lie pseudogroups in order to revisit the mathematical foundations of general relativity. Other engineering examples (control theory, elasticity theory, electromagnetism) will also be considered in order to illustrate the three fundamental results that we shall provide successively. 1) VESSIOT VERSUS CARTAN: The quadratic terms appearing in the “Riemann tensor” according to the “Vessiot structure equations” must not be identified with the quadratic terms appearing in the well known “Cartan structure equations” for Lie groups. In particular, “curvature + torsion” (Cartan) must not be considered as a generalization of “curvature alone” (Vessiot). 2) JANET VERSUS SPENCER: The “Ricci tensor” only depends on the nonlinear transformations (called “elations” by Cartan in 1922) that describe the “difference” existing between the Weyl group (10 parameters of the Poincaré subgroup + 1 dilatation) and the conformal group of space-time (15 parameters). It can be defined without using the indices leading to the standard contraction or trace of the Riemann tensor. Meanwhile, we shall obtain the number of components of the Riemann and Weyl tensors without any combinatoric argument on the exchange of indices. Accordingly and contrary to the “Janet sequence”, the “Spencer sequence” for the conformal Killing system and its formal adjoint fully describe the Cosserat equations, Maxwell equations and Weyl equations but General Relativity is not coherent with this result. 3) ALGEBRA VERSUS GEOMETRY: Using the powerful methods of “Algebraic Analysis”, that is a mixture of homological agebra and differential geometry, we shall prove that, contrary to other equations of physics (Cauchy equations, Cosserat equations, Maxwell equations), the Einstein equations cannot be “parametrized”, that is the generic solution cannot be expressed by means of the derivatives of a certain number of arbitrary potential-like functions, solving therefore negatively a 1000 $ challenge proposed by J. Wheeler in 1970. Accordingly, the mathematical foundations of electromagnetism and gravitation must be revisited within this formal framework, though striking it may look like. We insist on the fact that the arguments presented are of a purely mathematical nature and are thus unavoidable. 展开更多
关键词 General Relativity Riemann TENSOR Weyl TENSOR Ricci TENSOR Einstein Equations LIE Groups LIE Pseudogroups DIFFERENTIAL SEQUENCE SPENCER operator JANET SEQUENCE SPENCER SEQUENCE DIFFERENTIAL module Homological algebra extension modules Split Exact SEQUENCE
下载PDF
Minkowski, Schwarzschild and Kerr Metrics Revisited 被引量:1
19
作者 J.-F. Pommaret 《Journal of Modern Physics》 2018年第10期1970-2007,共38页
In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar... In recent papers, a few physicists studying Black Hole perturbation theory in General Relativity (GR) have tried to construct the initial part of a differential sequence based on the Kerr metric, using methods similar to the ones they already used for studying the Schwarzschild geometry. Of course, such a differential sequence is well known for the Minkowski metric and successively contains the Killing (order 1), the Riemann (order 2) and the Bianchi (order 1 again) operators in the linearized framework, as a particular case of the Vessiot structure equations. In all these cases, they discovered that the compatibility conditions (CC) for the corresponding Killing operator were involving a mixture of both second order and third order CC and their idea has been to exhibit only a minimal number of generating ones. Unhappily, these physicists are neither familiar with the formal theory of systems of partial differential equations and differential modules, nor with the formal theory of Lie pseudogroups. Hence, even if they discovered a link between these differential sequences and the number of parameters of the Lie group preserving the background metric, they have been unable to provide an intrinsic explanation of this fact, being limited by the technical use of Weyl spinors, complex Teukolsky scalars or Killing-Yano tensors. The purpose of this difficult computational paper is to provide differential and homological methods in order to revisit and solve these questions, not only in the previous cases but also in the specific case of any Lie group or Lie pseudogroup of transformations. These new tools, which are now available as computer algebra packages, question the mathematical foundations of GR and the origin of gravitational waves. 展开更多
关键词 General Relativity KILLING operator Riemann TENSOR Weyl TENSOR Bianchi IDENTITIES Lie Algebroid DIFFERENTIAL Sequence DIFFERENTIAL module Homological algebra extension modules
下载PDF
有限维非退化可解李代数顶点算子代数模的结构
20
作者 范洪霞 《哈尔滨商业大学学报(自然科学版)》 CAS 2020年第4期470-474,共5页
李代数是一类重要的非结合代数,它与众多数学分支都有紧密的联系,并且是物理学的重要研究工具.顶点算子代数是一种在共形场论及相关的物理领域中很重要的一种代数结构.顶点算子代数在纯数学领域如魔鬼月光中很有用.设g是有限维非退化可... 李代数是一类重要的非结合代数,它与众多数学分支都有紧密的联系,并且是物理学的重要研究工具.顶点算子代数是一种在共形场论及相关的物理领域中很重要的一种代数结构.顶点算子代数在纯数学领域如魔鬼月光中很有用.设g是有限维非退化可解非幂零李代数.V^g(l,0)为相应于g的顶点算子代数,得到了以下结果:W是相应于g的顶点代数(V^g(l,0),YV,1)模当且仅当W是的g的仿射李代数^g的水平为l的限制模;g的顶点算子代数的不可分解模存在子模的合成列. 展开更多
关键词 非退化可解李代数 顶点算子代数 不可分解模 诱导模 模的合成列
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部