期刊文献+
共找到335篇文章
< 1 2 17 >
每页显示 20 50 100
EDGE-FACE CHROMATIC NUMBER OF 2-CONNECTED PLANE GRAPHS WITH HIGH MAXIMUM DEGREE 被引量:1
1
作者 张忠辅 王维凡 +2 位作者 李敬文 姚兵 卜月华 《Acta Mathematica Scientia》 SCIE CSCD 2006年第3期477-482,共6页
The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, t... The edge-face chromatic number Xef (G) of a plane graph G is the least number of colors assigned to the edges and faces such that every adjacent or incident pair of them receives different colors. In this article, the authors prove that every 2-connected plane graph G with △(G)≥|G| - 2≥9 has Xef(G) = △(G). 展开更多
关键词 Plane graph edge-face chromatic number edge chromatic number maximum degree
下载PDF
Smarandachely Adjacent-vertex-distinguishing Proper Edge Coloring ofK4 V Kn 被引量:1
2
作者 CHEN Xiang-en YA O Bing 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第1期76-87,共12页
Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) ... Let f be a proper edge coloring of G using k colors. For each x ∈ V(G), the set of the colors appearing on the edges incident with x is denoted by Sf(x) or simply S(x) if no confusion arise. If S(u) = S(v) and S(v) S(u) for any two adjacent vertices u and v, then f is called a Smarandachely adjacent vertex distinguishing proper edge col- oring using k colors, or k-SA-edge coloring. The minimum number k for which G has a Smarandachely adjacent-vertex-distinguishing proper edge coloring using k colors is called the Smarandachely adjacent-vertex-distinguishing proper edge chromatic number, or SA- edge chromatic number for short, and denoted by Xsa(G). In this paper, we have discussed the SA-edge chromatic number of K4 V Kn. 展开更多
关键词 complete graphs join of graphs Smarandachely adjacent-vertex-distinguishing proper edge coloring Smarandachely adjacent-vertex-distinguishing proper edge chromatic number
下载PDF
Vertex-distinguishing E-total Coloring of Complete Bipartite Graph K 7,n when7≤n≤95 被引量:14
3
作者 chen xiang-en du xian-kun 《Communications in Mathematical Research》 CSCD 2016年第4期359-374,共16页
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints.... Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained. 展开更多
关键词 GRAPH complete bipartite graph E-total coloring vertex-distinguishingE-total coloring vertex-distinguishing E-total chromatic number
下载PDF
Vertex-distinguishing Total Colorings of 2Cn 被引量:6
4
作者 CHEN Xiang-en MA Yan-rong 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第3期323-330,共8页
Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct verti... Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct vertices u and v of V(G), then f is called a vertex- distinguishing total k-coloring of G. The minimum number k for which there exists a vertex- distinguishing total k-coloring of G is called the vertex-distinguishing total chromatic number of G and denoted by Xvt(G). The vertex-disjoint union of two cycles of length n is denoted by 2Cn. We will obtain Xvt(2Cn) in this paper. 展开更多
关键词 GRAPHS total coloring vertex-distinguishing total coloring vertex-distinguish-ing total chromatic number cycle
下载PDF
Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4
5
作者 CHEN XIANG-EN HE WEN-YU +2 位作者 LI ZE-PENG YAO BING Du Xian-kun 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i... Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. 展开更多
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Vertex-distinguishing VE-total Colorings of Cycles and Complete Graphs 被引量:5
6
作者 XIN Xiao-qing CHEN Xiang-en WANG Zhi-wen 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第1期92-97,共6页
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi... Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture. 展开更多
关键词 GRAPHS VE-total coloring vertex-distinguishing VE-total coloring vertexdistinguishing VE-total chromatic number
下载PDF
Adjacent vertex-distinguishing total colorings of K_s∨K_t
7
作者 冯云 林文松 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期226-228,共3页
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist... Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined. 展开更多
关键词 adjacent vertex-distinguishing total coloring adjacent vertex-distinguishing total chromatic number joingraph
下载PDF
Vertex-distinguishing IE-total Colorings of Complete Bipartite Graphs K8,n 被引量:3
8
作者 SHI Jin CHEN Xiang-en 《Chinese Quarterly Journal of Mathematics》 2016年第2期147-154,共8页
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte... Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained. 展开更多
关键词 complete bipartite graphs IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number
下载PDF
Adjacent Vertex-distinguishing E-total Coloring on Some Join Graphs Cm V Gn 被引量:3
9
作者 WANG Ji-shun 《Chinese Quarterly Journal of Mathematics》 CSCD 2012年第3期328-336,共9页
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i... Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed. 展开更多
关键词 join graph adjacent vertex-distinguishing E-total coloring adjacent vertexdistinguishing E-total chromatic number
下载PDF
Adjacent Strong Edge Chromatic Number of Series-Parallel Graphs 被引量:1
10
作者 王淑栋 庞善臣 许进 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期267-278,共12页
In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the doub... In this paper, we will study the adjacent strong edge coloring of series-parallel graphs, and prove that series-parallel graphs of △(G) = 3 and 4 satisfy the conjecture of adjacent strong edge coloring using the double inductions and the method of exchanging colors from the aspect of configuration property. For series-parallel graphs of △(G) ≥ 5, △(G) ≤ x'as(G) ≤ △(G) + 1. Moreover, x'as(G) = △(G) + 1 if and only if it has two adjacent vertices of maximum degree, where △(G) and X'as(G) denote the maximum degree and the adjacent strong edge chromatic number of graph G respectively. 展开更多
关键词 series-parallel graph adjacent strong edge coloring adjacent strong edge chromatic number.
下载PDF
Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9
11
作者 HE Yu-ping CHEN Xiang'en 《Chinese Quarterly Journal of Mathematics》 2019年第3期242-258,共17页
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b... Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper. 展开更多
关键词 the UNION of GRAPHS PROPER TOTAL COLORING vertex-distinguishing TOTAL COLORING vertex-distinguishing TOTAL chromatic number
下载PDF
An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph 被引量:15
12
作者 Xin-sheng Liu Ming-qiang An Yang Gao 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期137-140,共4页
A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges ... A proper k-edge coloring of a graph G is called adjacent vertex distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the color set of edges incident to u is not equal to the color set of edges incident to v, where uv ∈E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by χ'αα(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. In this paper we prove that if G(V, E) is a graph with no isolated edges, then χ'αα(G)≤32△. 展开更多
关键词 Adjacent strong edge coloring adjacent vertex distinguishing acyclic edge coloring adjacent vertexdistinguishing acyclic edge chromatic number the LovNsz local lemma
原文传递
A note on n-edge chromatic number 被引量:2
13
作者 SUN Liang and ZHANG Zhongfu1. Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, China 2. Institute of Applied Mathematics, Lanzhou Institute of Railway, Lanzhou 730070, China 《Chinese Science Bulletin》 SCIE EI CAS 1997年第23期1952-1954,共3页
ALL graphs appearing in this note are simple. A graph with p vertices and q edges will becalled a (p, q )-graph. The maximum degree of G is denoted by Δ(G).Let n≥2 be an integer. The n-edge chromatic number X_n (G) ... ALL graphs appearing in this note are simple. A graph with p vertices and q edges will becalled a (p, q )-graph. The maximum degree of G is denoted by Δ(G).Let n≥2 be an integer. The n-edge chromatic number X_n (G) of a simple graph G is theminimum cardinality of a set of colors with which one can assign the colors to the edges of Gsuch that the edges on a path of length less than or equal to n receive different colors.The aim of this note is to explore the bounds for X’_n (G) and X’_n (G) + X’_n (G). It is 展开更多
关键词 GRAPH COMPLEMENT n-edge chromatic number.
原文传递
双圈图的D(2)-点可区别边染色 被引量:2
14
作者 贾秀卿 文飞 +1 位作者 李泽鹏 李沐春 《高校应用数学学报(A辑)》 北大核心 2023年第2期236-252,共17页
图G的一个正常k-边染色f满足对■u,v∈V(G),当d(u,v)≤2时都有S_(f)(u)≠S_(f)(v),其中S_(f)(v)={f(vw)|vw∈E(G)}表示顶点v的所有关联边上所染颜色构成的集合,则称f为图G的k-D(2)-点可区别边染色(简记为k-D(2)-VDEC),将其所需要颜色的... 图G的一个正常k-边染色f满足对■u,v∈V(G),当d(u,v)≤2时都有S_(f)(u)≠S_(f)(v),其中S_(f)(v)={f(vw)|vw∈E(G)}表示顶点v的所有关联边上所染颜色构成的集合,则称f为图G的k-D(2)-点可区别边染色(简记为k-D(2)-VDEC),将其所需要颜色的最小数k称为D(2)-点可区别边色数,简记为χ’_(2-vd)(G).结合Hall定理证明了最大度为△(G)的双圈图G都有χ’_(2-vd)(G)≤△(G)+2. 展开更多
关键词 双圈图 正常边染色 D(2)-点可区别边染色 D(2)-点可区别边色数
下载PDF
若干联图的邻点和可约边染色 被引量:5
15
作者 罗榕 李敬文 +1 位作者 张树成 张荞君 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期201-207,共7页
该文在已有的图染色概念基础之上,结合实际问题提出了邻点和可约边染色的新概念,设计了一种新型的邻点和可约边染色(adjacent vertex sum reducible edge coloring, AVSREC)算法,该算法采用迭代寻优方式针对有限点内的所有非同构图集进... 该文在已有的图染色概念基础之上,结合实际问题提出了邻点和可约边染色的新概念,设计了一种新型的邻点和可约边染色(adjacent vertex sum reducible edge coloring, AVSREC)算法,该算法采用迭代寻优方式针对有限点内的所有非同构图集进行求解,通过实验结果分析,总结得到了若干联图的定理并给出证明. 展开更多
关键词 联图 邻点和可约边染色 邻点和可约边色数 算法
下载PDF
若干联图的L(2,1)-边染色算法
16
作者 朱利娜 李敬文 孙帅 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第3期175-183,共9页
图的距离染色问题是频率分配问题的一种图模型,所谓的频率分配问题是指某一区域的不同电台要使用无线电波发送信号,为了避免干扰,位置较近的电台需要使用不同的频道,当电台距离特别近时,它们之间需要间隔至少2个信道。L(2,1)-边染色是... 图的距离染色问题是频率分配问题的一种图模型,所谓的频率分配问题是指某一区域的不同电台要使用无线电波发送信号,为了避免干扰,位置较近的电台需要使用不同的频道,当电台距离特别近时,它们之间需要间隔至少2个信道。L(2,1)-边染色是指距离为1的两条边的色数差值大于等于2,距离大于1的两条边的色数不同。本文针对随机图设计了一种L(2,1)-边染色算法,实验结果表明,该算法能够解决有限点内随机图的L(2,1)-边染色问题。通过分析实验结果,发现了3类单圈图的染色特性,定义C_(3)↑P_(n)↑S_(m),C_(n)↓S_(m)和C_(n)↑S_(m)分别来刻画这三类单圈图,并给出相关定理及其证明。 展开更多
关键词 L(2 1)-边染色 色数 单圈图 算法
下载PDF
联图P_(m)∨C_(n)的邻和可区别边染色
17
作者 白羽 强会英 《井冈山大学学报(自然科学版)》 2023年第6期7-13,共7页
图G的邻和可区别边染色是指图G的一个正常边染色φ,满足图G中的任意一条边uv,点u关联边的颜色数之和异于点V。图G的一个邻和可区别k-边染色中用到的最小颜色数k,称为图G的邻和可区别边色数。本研究运用数学归纳法、分析法研究了联图P_(m... 图G的邻和可区别边染色是指图G的一个正常边染色φ,满足图G中的任意一条边uv,点u关联边的颜色数之和异于点V。图G的一个邻和可区别k-边染色中用到的最小颜色数k,称为图G的邻和可区别边色数。本研究运用数学归纳法、分析法研究了联图P_(m)∨C_(n)的邻和可区别边染色问题,得到了联图P_(m)∨C_(n)的邻和可区别边色数。 展开更多
关键词 联图 邻和可区别边染色 邻和可区别边色数
下载PDF
边替换图的邻和可区别全染色
18
作者 常景智 杨超 姚兵 《吉林大学学报(理学版)》 CAS 北大核心 2023年第3期477-482,共6页
考虑图的邻和可区别全染色问题及其相关的1-2猜想.首先,利用独立消圈集法得到剖分图S(G)和三角扩展图R(G)的邻和可区别全色数;其次,当G为任意简单连通图且T为给定的特殊图时,证明边替换图G[T]满足1-2猜想.
关键词 边替换图 独立消圈集法 邻和可区别全色数 1-2猜想
下载PDF
图的倍图与补倍图(英文) 被引量:22
19
作者 张忠辅 仇鹏翔 +3 位作者 张东翰 卞量 李敬文 张婷 《数学进展》 CSCD 北大核心 2008年第3期303-310,共8页
计算机科学数据库的关系中遇到了可归为倍图或补倍图的参数和哈密顿圈的问题.对简单图G,如果V(D(G))=V(G)∪V(G′),E(D(G))=E(G)∪E(G′)∪{v_iv_j′|v_i∈V(G),v_j′∈V(G′)且v_iv_j∈E(G)}那么,称D(G)是G的倍图,如果V((?)(G))=V(G)∪... 计算机科学数据库的关系中遇到了可归为倍图或补倍图的参数和哈密顿圈的问题.对简单图G,如果V(D(G))=V(G)∪V(G′),E(D(G))=E(G)∪E(G′)∪{v_iv_j′|v_i∈V(G),v_j′∈V(G′)且v_iv_j∈E(G)}那么,称D(G)是G的倍图,如果V((?)(G))=V(G)∪V(G′),E((?)(C))= E(G)∪E(G′)∪{v_iv_j′|v_i∈V(G),v_j′∈V(G′)and v_iv_j(?)E(G)},称(?)(C)是G的补倍图,这里G′是G的拷贝.本文研究了D(G)和(?)的色数,边色数,欧拉性,哈密顿性和提出了D(G)的边色数是D(G)的最大度等公开问题. 展开更多
关键词 倍图 补倍图 色数 边色数 欧拉图 哈密顿图
下载PDF
关于C_m×C_(5n)的全色数和邻强边色数 被引量:24
20
作者 张婷 李沐春 +2 位作者 徐保根 安常胜 左超 《兰州交通大学学报》 CAS 2007年第6期124-126,139,共4页
设G是一个简单图,k为正整数,V(G)∪E(G)到{1,2,…,k}的一个映射f满足:对于任意的uv∈E(G)有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);任意的uv,vw∈E(G),u≠w,有f(uv)≠f(uw),则称f为G的k-全染色,简记为k-TC,并称ΧT(G)=min{k|G存在k-TC}为... 设G是一个简单图,k为正整数,V(G)∪E(G)到{1,2,…,k}的一个映射f满足:对于任意的uv∈E(G)有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv);任意的uv,vw∈E(G),u≠w,有f(uv)≠f(uw),则称f为G的k-全染色,简记为k-TC,并称ΧT(G)=min{k|G存在k-TC}为G的全色数.证明了圈Cm与圈C5n的笛卡尔积图的全色数和邻强边色数都为5. 展开更多
关键词 笛卡尔积图 全色数 邻强边色数
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部