The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospher...The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.展开更多
The influence of local site effects on seismic ground motions is an important issue in seismic hazard assessment and earthquake resistant design. Determining site effects in densely populated cities built on basins ca...The influence of local site effects on seismic ground motions is an important issue in seismic hazard assessment and earthquake resistant design. Determining site effects in densely populated cities built on basins can help to reduce the earthquake hazard. Site effects of Luoyang basin are estimated by the horizontal-to-vertical spectral ratio(HVSR) method using ambient noise records from a short-period dense array. The sites in Luoyang basin are sorted into three types according to the pattern of the HVSR curves. There are cases with a single clear peak, two clear peaks, and an unclear low frequency peak or multiple peaks, which correspond to there being one large impedance contrast interface, two large interfaces, and a moderate one beneath the sites, respectively. The site effects characterized by fundamental frequency from HVSR curves are affected by underlying sedimentary layers and depth of sedimentary basement. According to our results, the existence of thick sediment layer obviously lowers the fundamental frequency to the period range from 2 to 4 s in the downtown area of Luoyang city. The ground motion will amplify when through the sites and the buildings with height of 20–50 floors can resonate at the similar frequency domain. Site effects estimation using HVSR method from a short-period dense array is an effective technique in areas of moderate seismic risk where strong motion recordings are lacking, such as the Luoyang basin.展开更多
Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where th...Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where the newly updated extrinsic information is immediately used in the current decoding round. Theoretical analysis and simulation results demonstrate that both the modified approaches provide significant performance improvements over the traditional BP algorithm with almost no additional decoding complexity. The proposed algorithm with modified horizontal process offers even better performance than another algorithm with the modified horizontal process. The two modified BP algorithms are very promising in practical communications since both can achieve an excellent trade-off between the performance and decoding complexity.展开更多
Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree ...Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree on the product scheduling effect.This paper presents an integrated scheduling algorithm for the same equipment process sequencing based on the Root-Subtree horizontal and vertical pre-scheduling to solve the above problem.Firstly,the tree decomposition method is used to extract the root node to split the process tree into several Root-Subtrees,and the Root-Subtree priority is set from large to small through the optimal completion time of vertical and horizontal pre-scheduling.All Root-Subtree processes on the same equipment are sorted into the stack according to the equipment process pre-start time,and the stack-top processes are combined with the schedulable process set to schedule and dispatch the stack.The start processing time of each process is determined according to the dynamic start processing time strategy of the equipment process,to complete the fusion operation of the Root-Subtree processes under the constraints of the vertical process tree and the horizontal equipment.Then,the root node is retrieved to form a substantial scheduling scheme,which realizes scheduling optimization by mining the vertical and horizontal characteristics of the process tree.Verification by examples shows that,compared with the traditional integrated scheduling algorithms that sort the scheduling processes as an overall,the integrated scheduling algorithmin this paper is better.The proposed algorithmenhances the process scheduling compactness,reduces the length of the idle time of the processing equipment,and optimizes the production scheduling target,which is of universal significance to solve the integrated scheduling problem.展开更多
This article aims to study the efficiency of coupled vertical drains for the treatment of long-lasting compressible clay soils for the road project platform of the ring road of Porto Novo, capital of Benin. The experi...This article aims to study the efficiency of coupled vertical drains for the treatment of long-lasting compressible clay soils for the road project platform of the ring road of Porto Novo, capital of Benin. The experimental data allowed us to estimate a consolidation of 29% in 9 months, justifying the drainage of the soil. In order to study the efficiency of drainage, a FEM model was proposed simulating different scenarios. These include a drainless road, pavements equipped with vertical drains with meshes of 0.5 m 0.5 m, 1 m 1 m and 1.5 m 1.5 m respectively and horizontal drains. The results expressed in terms of variations in vertical stresses, effective stresses and shear deformations revealed significant variations in pavement performance depending on the mesh size of the vertical drains. The configuration with a mesh of 0.5 m 0.5 m showed the least deformations, thus indicating a reduction in deformations and better stress distribution. However, the other mesh configurations showed variable results, underlining the importance of choosing the right mesh for the specific project conditions.展开更多
Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivati...Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.展开更多
To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutio...To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa.展开更多
The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be...The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.展开更多
The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of h...The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.展开更多
Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation i...Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.展开更多
The effect of hollow fiber module positions ( horizontal and vertical) on separation performance for PVA solution by using polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with the molecular wei...The effect of hollow fiber module positions ( horizontal and vertical) on separation performance for PVA solution by using polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with the molecular weight cut-off (MWCO) 30 000 has been discussed. Experimental results illustrated that the suitable operation conditions for PVA solution were as follows: trans-membrane pressure 2.1 bar, solution temperature 75℃ and feed velocity 0.32 m/s. Under these suitable operation conditions, the permeate flux is from 36.8 L/(m^2 ·h·bar) to 42.9 L/(m^2 ·h·bar) for the horizontal module and from 39.8 L/(m^2 ·h·bar) to 66.6 L/(m^2 ·h·bar) for the vertical module. Besides, the Separation performance of PES hollow fiber UF membrane was better by using vertical hollow fiber module than by using horizontal hollow fiber module. When the trans-membrane pressure increased from 1 bar to 2.1 bar, solution temperature from 50 ℃ to 75 ℃, feed solution velocity from 0.16 m/s to 0.32 m/s, the PVA rejection would increase from 95.8% to 99.7%, 95.4 96 to 98.6 %, 95.8 96 to 99.2 96 for horizontal module respectively, and from 98.8 96 to 99.8 %, 98.6 96 to 99.4 96, 98.5 96 to 99.4 96 for vertical module respectively. Therefore, PVA rejection in PES hollow fiber UF process was more than 98.5 96 for vertical module, and it is suitable for PVA recovery from wastewater.展开更多
In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a pl...In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.展开更多
Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave...Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave reflection is an important process that affects the determination of the wave height. Many of the design formulas presented in the literature depend on empirical studies based on the structures tested. In this study, the hydrodynamic conditions in front of a vertical wall with an overhanging horizontal cantilever slab with a foreshore slope of 1/20 are determined experimentally under regular wave conditions to assess the applicability of the formulas of Goda(2000) for predicting the nearshore wave height and breaker index equation(Goda, 2010). The selection of wave measurements used to determine the design wave height, the reflection coefficients, and wave breaking is also analyzed, and the reflection equations are derived from the dataset covering different breaker types. Small-scale tests show that the incident wave height is a good representative of the design wave height and that the values predicted by Goda are in good agreement with actual measurements. However, the predicted Hmax values are overestimated. In addition, the inception of the wave breaking point is postponed because of the reflection and/or turbulence left over from preceding waves, which is an effect of the vertical wall. At higher water levels, the effect of the vertical wall on the inception point becomes more significant.展开更多
Considering the existence of multi-level fares in the alliance,and the existence of horizontal competition and vertical competition at the same time,this paper intends to maximize the revenue of airline alliance and f...Considering the existence of multi-level fares in the alliance,and the existence of horizontal competition and vertical competition at the same time,this paper intends to maximize the revenue of airline alliance and fairly distribute the revenue to member airlines.Firstly,a model is built under the centralized mechanism,in which all airlines in the alliance are regarded as a whole.By solving the model,the shadow price of each flight leg on the code-sharing route is gotten.It is used to calculate the proportion of the revenue distribution.Then,the centralized model is decomposed into the single airline model by the proportion.The seat allocation among airlines and distributed revenue can be gotten by solving the model.Three typical examples are designed to test it.The results show that,the model can effectively reflect the managerial principal of the airline alliance,that is maximizing total revenue and fairly distributing the revenue among member airlines.展开更多
In a semi-infinite aquifer bounded by a channel, a transient flow model is constructed for phreatic water subjected to vertical and horizontal seepage. Based on the first linearized Boussinesq equation, the analytical...In a semi-infinite aquifer bounded by a channel, a transient flow model is constructed for phreatic water subjected to vertical and horizontal seepage. Based on the first linearized Boussinesq equation, the analytical solution of the model is obtained by Laplace transform. Having proven the transformation between the analytical solution and some relevant classic formulas, suitable condition for each of these formulas is demonstrated. On the base of the solution, the variation of transient flow process caused by the variables, such as vertical infiltration intensity, fluctuation range of river stage, aquifer parameters such as transmissivity and specific yield, and the distance from calculating point to channel boundary, are analyzed quantitatively one by one. Lagging effect will happen to the time, when phreatic water gets its maximum fluctuation velocity, response to the varying of the variables stated above. The condition for some variables to form equivalent lagging effect is demonstrated. Corresponding to the mathematical charac teristics of the analytical solution, the physical implication and the fluctuation rule of groundwater level are discussed.展开更多
Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnos...Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.展开更多
Natural convective heat transfer from a heated horizontal and vertical surfaces directly exposed into air which vertical fins, attached to a surface, project vertically downwards has been numerically studied. It has b...Natural convective heat transfer from a heated horizontal and vertical surfaces directly exposed into air which vertical fins, attached to a surface, project vertically downwards has been numerically studied. It has been assumed that the fins are everywhere at the temperature of the surface. The governing equations, written in dimensionless form, have been solved using the finite element procedure. The results show that vertical plate with vertical fins gives the best performance for natural cooling.展开更多
For better understanding the variation of helicity and its governing mechanisms,based on the primary momentum equation under the local Cartesian coordinate,a set of horizontal and vertical helicity equations are deriv...For better understanding the variation of helicity and its governing mechanisms,based on the primary momentum equation under the local Cartesian coordinate,a set of horizontal and vertical helicity equations are derived in this study.On this basis,a storm-relative helicity budget equation is derived,the main factors that govern the variation of helicity are discussed,and the key mechanisms underlying the helicity variation are illustrated by using schematic images.Both scale analysis and real case diagnosis are used to compare the relative importance of di erent factors on the variation of helicity.For a meso-α system,it is found that:(i)horizontal helicity is much larger than vertical helicity,and they show signi cantly di erent variation mechanisms;(ii)for the vertical helicity,the vertical perturbation pressure gradient force,buoyancy,the diver-gence-related e ect,and the conversion between vertical and horizontal helicity govern its variation(whereas,the conversion is negligible for the evolution of horizontal helicity);and(iii)baroclinity is crucial for the variation of horizontal helicity,but it is only of secondary importance for the vertical helicity variation.展开更多
We set four sets of simulation experiments to explore the impacts of horizontal resolution(HR)and vertical resolution(VR)on the microphysical structure and boundary layer fluxes of tropical cyclone(TC)Hato(2017).The s...We set four sets of simulation experiments to explore the impacts of horizontal resolution(HR)and vertical resolution(VR)on the microphysical structure and boundary layer fluxes of tropical cyclone(TC)Hato(2017).The study shows that higher HR tends to strengthen TC.Increasing VR in the upper layers tends to weaken TC,while increasing VR in the lower layers tends to strengthen TC.Simulated amounts of all hydrometeors were larger with higher HR.Increasing VR at the upper level enhanced the mixing ratios of cloud ice and cloud snow,while increasing VR at the lower level elevated the mixing ratios of graupel and rainwater.HR has greater impact on the distributions of hydrometeors.Higher HR has a more complete ring structure of the eyewall and more concentrated hydrometeors along the cloud wall.Increasing VR at the lower level has little impact on the distribution of TC hydrometeors,while increasing VR at the upper level enhances the cloud thickness of the eyewall area.Surface latent heat flux(SLHF)is influenced greatly by resolution.Higher HR leads to larger water vapor fluxes and larger latent heat,which would result in a stronger TC.A large amount of false latent heat was generated when HR was too high,leading to an extremely strong TC,VR has a smaller impact on SLHF than HR.But increasing VR at the upper-level reduces the SLHF and weakens TC,and elevating VR at the lower-level increases the SLHF and strengthens TC.The changes in surface water vapor flux and SLHF were practically identical and the simulation results were improved when HR and VR were more coordinated.The friction velocity was greater with higher VR.Enhancing VR at the lower level increased the friction velocity,while increasing VR at the upper level reduced it.展开更多
Subjective visual vertical(SVV)and subjective visual horizontal(SVH)tests can be used to evaluate the perception of verticality and horizontality,respectively,and can aid the diagnosis of otolith dysfunction in clinic...Subjective visual vertical(SVV)and subjective visual horizontal(SVH)tests can be used to evaluate the perception of verticality and horizontality,respectively,and can aid the diagnosis of otolith dysfunction in clinical practice.In this study,SVV and SVH screen version tests are implemented using virtual reality(VR)equipment;the proposed test method promotes a more immersive feeling for the subject while using a simple equipment configuration and possessing excellent mobility.To verify the performance of the proposed VR-based SVV and SVH tests,a reliable comparison was made between the traditional screen-based SVV and SVH tests and the proposed method,based on 30 healthy subjects.The average results of our experimental tests on the VR-based binocular SVV and SVH equipment were−0.15◦±1.74 and 0.60◦±1.18,respectively.The proposed VR-based method satisfies the normal tolerance for horizontal or vertical lines,i.e.,a±3◦error,as defined in previous studies,and it can be used to replace existing test methods.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFF0503700)the special funds of Hubei Luojia Laboratory(Grant No.220100011).
文摘The Michelson Interferometer for Global High-resolution Thermospheric Imaging(MIGHTI)onboard the Ionospheric Connection Explorer(ICON)satellite offers the opportunity to investigate the altitude profile of thermospheric winds.In this study,we used the red-line measurements of MIGHTI to compare with the results estimated by Horizontal Wind Model 14(HWM14).The data selected included both the geomagnetic quiet period(December 2019 to August 2022)and the geomagnetic storm on August 26-28,2021.During the geomagnetic quiet period,the estimations of neutral winds from HWM14 showed relatively good agreement with the observations from ICON.According to the ICON observations,near the equator,zonal winds reverse from westward to eastward at around 06:00 local time(LT)at higher altitudes,and the stronger westward winds appear at later LTs at lower altitudes.At around 16:00 LT,eastward winds at 300 km reverse to westward,and vertical gradients of zonal winds similar to those at sunrise hours can be observed.In the middle latitudes,zonal winds reverse about 2-4 h earlier.Meridional winds vary more significantly than zonal winds with seasonal and latitudinal variations.According to the ICON observations,in the northern low latitudes,vertical reversals of meridional winds are found at 08:00-13:00 LT from 300 to 160 km and at around 18:00 LT from 300 to 200 km during the June solstice.Similar reversals of meridional winds are found at 04:00-07:00 LT from 300 to 160 km and at 22:00-02:00 LT from 270 to 200 km during the December solstice.In the southern low latitudes,meridional wind reversals occur at 08:00-11:00 LT from 200 to 160 km and at 21:00-02:00 LT from 300 to 200 km during the June solstice.During the December solstice,reversals of the meridional wind appear at 20:00-01:00 LT below 200 km and at 06:00-11:00 LT from 300 to 160 km.In the northern middle latitudes,the northward winds are dominant at 08:00-14:00 LT at 230 km during the June solstice.Northward winds persist until 16:00 LT at 160 and 300 km.During the December solstice,the northward winds are dominant from 06:00 to 21:00 LT.The vertical variations in neutral winds during the geomagnetic storm on August 26-28 were analyzed in detail.Both meridional and zonal winds during the active geomagnetic period observed by ICON show distinguishable vertical shear structures at different stages of the storm.On the dayside,during the main phase,the peak velocities of westward winds extend from a higher altitude to a lower altitude,whereas during the recovery phase,the peak velocities of the westward winds extend from lower altitudes to higher altitudes.The velocities of the southward winds are stronger at lower altitudes during the storm.These vertical structures of horizontal winds during the storm could not be reproduced by the HWM14 wind estimations,and the overall response to the storm of the horizontal winds in the low and middle latitudes is underestimated by HWM14.The ICON observations provide a good dataset for improving the HWM wind estimations in the middle and upper atmosphere,especially the vertical variations.
基金funded by the National Key R&D Program of China(No.2017YFC1500202)supported by the National Natural Science Foundation of China(No.41604048)China Earthquake Science Experiment(No.2016CESE0103)
文摘The influence of local site effects on seismic ground motions is an important issue in seismic hazard assessment and earthquake resistant design. Determining site effects in densely populated cities built on basins can help to reduce the earthquake hazard. Site effects of Luoyang basin are estimated by the horizontal-to-vertical spectral ratio(HVSR) method using ambient noise records from a short-period dense array. The sites in Luoyang basin are sorted into three types according to the pattern of the HVSR curves. There are cases with a single clear peak, two clear peaks, and an unclear low frequency peak or multiple peaks, which correspond to there being one large impedance contrast interface, two large interfaces, and a moderate one beneath the sites, respectively. The site effects characterized by fundamental frequency from HVSR curves are affected by underlying sedimentary layers and depth of sedimentary basement. According to our results, the existence of thick sediment layer obviously lowers the fundamental frequency to the period range from 2 to 4 s in the downtown area of Luoyang city. The ground motion will amplify when through the sites and the buildings with height of 20–50 floors can resonate at the similar frequency domain. Site effects estimation using HVSR method from a short-period dense array is an effective technique in areas of moderate seismic risk where strong motion recordings are lacking, such as the Luoyang basin.
基金National Mobile Communication Research Laboratory,Southeast University(No.W200704),ChinaNatural Science foundation of Jiangsu Province (No.BK2006188),ChinaQuebec-China Joint Research Foundation by McGill University,Montreal,Quebec,Canada
文摘Two modified BP algorithms related to vertical and horizontal processes are proposed to accelerate iterative low-density parity- check (LDPC) decoding over an additive white Gaussian noise (AWGN) channel, where the newly updated extrinsic information is immediately used in the current decoding round. Theoretical analysis and simulation results demonstrate that both the modified approaches provide significant performance improvements over the traditional BP algorithm with almost no additional decoding complexity. The proposed algorithm with modified horizontal process offers even better performance than another algorithm with the modified horizontal process. The two modified BP algorithms are very promising in practical communications since both can achieve an excellent trade-off between the performance and decoding complexity.
基金supported by the National Natural Science Foundation of China[Grant No.61772160].
文摘Given the existing integrated scheduling algorithms,all processes are ordered and scheduled overall,and these algorithms ignore the influence of the vertical and horizontal characteristics of the product process tree on the product scheduling effect.This paper presents an integrated scheduling algorithm for the same equipment process sequencing based on the Root-Subtree horizontal and vertical pre-scheduling to solve the above problem.Firstly,the tree decomposition method is used to extract the root node to split the process tree into several Root-Subtrees,and the Root-Subtree priority is set from large to small through the optimal completion time of vertical and horizontal pre-scheduling.All Root-Subtree processes on the same equipment are sorted into the stack according to the equipment process pre-start time,and the stack-top processes are combined with the schedulable process set to schedule and dispatch the stack.The start processing time of each process is determined according to the dynamic start processing time strategy of the equipment process,to complete the fusion operation of the Root-Subtree processes under the constraints of the vertical process tree and the horizontal equipment.Then,the root node is retrieved to form a substantial scheduling scheme,which realizes scheduling optimization by mining the vertical and horizontal characteristics of the process tree.Verification by examples shows that,compared with the traditional integrated scheduling algorithms that sort the scheduling processes as an overall,the integrated scheduling algorithmin this paper is better.The proposed algorithmenhances the process scheduling compactness,reduces the length of the idle time of the processing equipment,and optimizes the production scheduling target,which is of universal significance to solve the integrated scheduling problem.
文摘This article aims to study the efficiency of coupled vertical drains for the treatment of long-lasting compressible clay soils for the road project platform of the ring road of Porto Novo, capital of Benin. The experimental data allowed us to estimate a consolidation of 29% in 9 months, justifying the drainage of the soil. In order to study the efficiency of drainage, a FEM model was proposed simulating different scenarios. These include a drainless road, pavements equipped with vertical drains with meshes of 0.5 m 0.5 m, 1 m 1 m and 1.5 m 1.5 m respectively and horizontal drains. The results expressed in terms of variations in vertical stresses, effective stresses and shear deformations revealed significant variations in pavement performance depending on the mesh size of the vertical drains. The configuration with a mesh of 0.5 m 0.5 m showed the least deformations, thus indicating a reduction in deformations and better stress distribution. However, the other mesh configurations showed variable results, underlining the importance of choosing the right mesh for the specific project conditions.
基金supported by the National Science and Technology Major Projects (2008ZX05025)the Project of National Oil and Gas Resources Strategic Constituency Survey and Evaluation of the Ministry of Land and Resources,China (XQ-2007-05)
文摘Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.
基金The National Natural Science Foundation of China under contract Nos 51809023,51839002 and 51879015the Open Research Foundation of the Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,the Ministry of Water Resources under contract No.2018KJ03
文摘To determine the grid resolutions of the WRF model in the typhoon simulation,some sensitivity analysis of horizontal and vertical resolutions in different conditions has been carried out.Different horizontal resolutions(5,10,20,30 km),nesting grids(15 and 5 km),different vertical resolutions(35-layers,28-layers,20-layers)and different top maximum pressures(1 000,2 000,3 500,5 000 Pa)had been used in the mesoscale numerical model WRF to simulate the Typhoon Kai-tak.The simulation results of typhoon track,wind speed and sea level pressure at different horizontal and vertical resolutions have been compared and analyzed.The horizontal and vertical resolutions of the model have limited effect on the simulation effect of the typhoon track.Different horizontal and vertical resolutions have obvious effects on typhoon strength(defined by wind speed)and intensity(defined by sea level pressure,SLP),especially for sea level pressure.The typhoon intensity simulated by the high-resolution model is closer to the real situation and the nesting grids can improve computational accuracy and efficiency.The simulation results affected by vertical resolution using 35-layers is better than the simulation results using 20-layers and 28-layers simulations.Through comparison and analysis,the horizontal and vertical resolutions of WRF model are finally determined as follows:the two-way nesting grid of 15 and 5 km is comprehensively determined,and the vertical layers is 35-layers,the top maximum pressure is 2 000 Pa.
基金financially supported by the China National Funds for Distinguished Young Scholars(Grant No.51222904)the National Natural Science Foundation of China(Grant No.51379039)
文摘The pulse features of a bubble have a close connection with the boundary condition. When a bubble moves near a rigid wall, it will be attracted by the Bjerknes force of the wall, and a jet pointing at the wall will be generated. In real application, the bubble may move under the combined action of walls in different directions when it forms at the corner of a pipe or at the bottom of a dam. The motion of the bubble shows complex and nonlinear characteristics under these conditions. In order to investigate the bubble pulse features near complex walls, a horizontal wall and a vertical wall are put into the experimental water tank synchronously, and an electric circuit with 200 voltages is designed to generate discharge bubbles, and then experimental study on the bubble pulse features under the combined action of horizontal and vertical walls is carried out. The influences of the combined action of two walls on the bubble shape, pulse period, moving trace and inside jet are obtained by changing the distances from bubble center to the two walls. It aims at providing references for the relevant theoretical and numerical research.
基金National Key Basic Research Development Program"973"(2013CB430103,2009CB421503)National Natural Science Funding(41375058,41530427)State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2015LASW-A07)
文摘The present work provides a novel method for calculating vertical velocity based on continuity equations in a pressure coordinate system.The method overcomes the disadvantage of accumulation of calculating errors of horizontal divergence in current kinematics methods during the integration for calculating vertical velocity,and consequently avoids its subsequent correction.In addition,through modifications of the continuity equations,it shows that the vorticity of the vertical shear vector(VVSV) is proportional to-ω,the vertical velocity in p coordinates.Furthermore,if the change of ω in the horizontal direction is neglected,the vorticity of the horizontal vorticity vector is proportional to-ω.When ω is under a fluctuating state in the vertical direction,the updraft occurs when the vector of horizontal vorticity rotates counterclockwise;the downdraft occurs when rotating clockwise.The validation result indicates that the present method is generally better than the vertical velocity calculated by the ω equation using the wet Q-vector divergence as a forcing term,and the vertical velocity calculated by utilizing the kinematics method is followed by the O'Brien method for correction.The plus-minus sign of the vertical velocity obtained with this method is not correlated with the intensity of d BZ,but the absolute error increases when d BZ is >=40.This method demonstrates that it is a good reflection of the direction of the vertical velocity.
基金funded by the National Natural Science Foundation of China[grant numbers 41474001,41830110]the Fundamental Research Funds for Central Universities[grant number 2018B58214]+2 种基金the Surveying and Mapping Basic Research Program of National Administration of Surveying,Mapping and Geoinformation[grant number 13-01-05]the Major Scientific and Technological Projects of Jiangxi Water Resources Department[grant number kt201322]the Natural Science Foundation of Jiangsu Province,China[grant number BK20170869]。
文摘Landslides are common hazards in reservoir areas and significantly affect dam operation and human lives.For the prevention and management of landslides,accurate assessment of the factors influencing their generation is essential.This study evaluated the key external factors influencing horizontal and vertical displacements of Luobogang Reservoir Slope in Hanyuan County,China.Displacements had been monitored by a surface-displacement-monitoring system consisting of 118 GPS stations during 2012-2015.To identify the external driving factors,their influence zones,and slope responses,we analyzed 32 months of displacement measurements and other multi-source datasets using the empirical orthogonal function.Overall,the results show that slope aging effect,rainfall,and reservoir water levels are three main driving factors.For horizontal displacement,aging effect is the most critical factor and predominantly affects the edges of landslides,the gob cave,and the public building zones.The secondary factor is the reservoir water level,which mainly acts on the boundary between the slope and reservoir water surface.The closer the slope zone is to the reservoir water,the more significant the impact is.Regarding vertical displacement,the most important factor is rainfall.The vertical displacement caused by rainfall accounts for 56.76% of the total vertical displacements.However,rainfall induces elastic displacements that generally cause less damage to the slope.The secondary factor is aging effect,and the vertical displacement caused by aging effect accounts for 9.42%.However,seven individual zones are highly affected by slope aging effect,which is consistent with the distribution of public buildings.
文摘The effect of hollow fiber module positions ( horizontal and vertical) on separation performance for PVA solution by using polyethersulfone (PES) hollow fiber ultrafiltration (UF) membrane with the molecular weight cut-off (MWCO) 30 000 has been discussed. Experimental results illustrated that the suitable operation conditions for PVA solution were as follows: trans-membrane pressure 2.1 bar, solution temperature 75℃ and feed velocity 0.32 m/s. Under these suitable operation conditions, the permeate flux is from 36.8 L/(m^2 ·h·bar) to 42.9 L/(m^2 ·h·bar) for the horizontal module and from 39.8 L/(m^2 ·h·bar) to 66.6 L/(m^2 ·h·bar) for the vertical module. Besides, the Separation performance of PES hollow fiber UF membrane was better by using vertical hollow fiber module than by using horizontal hollow fiber module. When the trans-membrane pressure increased from 1 bar to 2.1 bar, solution temperature from 50 ℃ to 75 ℃, feed solution velocity from 0.16 m/s to 0.32 m/s, the PVA rejection would increase from 95.8% to 99.7%, 95.4 96 to 98.6 %, 95.8 96 to 99.2 96 for horizontal module respectively, and from 98.8 96 to 99.8 %, 98.6 96 to 99.4 96, 98.5 96 to 99.4 96 for vertical module respectively. Therefore, PVA rejection in PES hollow fiber UF process was more than 98.5 96 for vertical module, and it is suitable for PVA recovery from wastewater.
文摘In this paper, a class of discrete vertical and horizontal transmitted disease model under constant vaccination is researched. Under the hypothesis of population being constant size, the model is transformed into a planar map and its equilibrium points and the corresponding eigenvalues are solved out. By discussing the influence of coefficient parameters on the eigenvalues, the hyperbolicity of equilibrium points is determined. By getting the equations of flows on center manifold, the direction and stability of the transcritical bifurcation and flip bifurcation are discussed.
基金supported by the Special Research Fund by Ghent University (BOF)
文摘Transforming wave heights from offshore to the shoreline is the first step of any coastal engineering work. Wave breaking is analyzed to understand hydrodynamic conditions. For vertical breakwaters and sea walls, wave reflection is an important process that affects the determination of the wave height. Many of the design formulas presented in the literature depend on empirical studies based on the structures tested. In this study, the hydrodynamic conditions in front of a vertical wall with an overhanging horizontal cantilever slab with a foreshore slope of 1/20 are determined experimentally under regular wave conditions to assess the applicability of the formulas of Goda(2000) for predicting the nearshore wave height and breaker index equation(Goda, 2010). The selection of wave measurements used to determine the design wave height, the reflection coefficients, and wave breaking is also analyzed, and the reflection equations are derived from the dataset covering different breaker types. Small-scale tests show that the incident wave height is a good representative of the design wave height and that the values predicted by Goda are in good agreement with actual measurements. However, the predicted Hmax values are overestimated. In addition, the inception of the wave breaking point is postponed because of the reflection and/or turbulence left over from preceding waves, which is an effect of the vertical wall. At higher water levels, the effect of the vertical wall on the inception point becomes more significant.
基金partially supported by the Natural Science Foundation of Jiangsu Province(No.BK 20151479)the Central University Basic Research Fees(No.NZ2016109)
文摘Considering the existence of multi-level fares in the alliance,and the existence of horizontal competition and vertical competition at the same time,this paper intends to maximize the revenue of airline alliance and fairly distribute the revenue to member airlines.Firstly,a model is built under the centralized mechanism,in which all airlines in the alliance are regarded as a whole.By solving the model,the shadow price of each flight leg on the code-sharing route is gotten.It is used to calculate the proportion of the revenue distribution.Then,the centralized model is decomposed into the single airline model by the proportion.The seat allocation among airlines and distributed revenue can be gotten by solving the model.Three typical examples are designed to test it.The results show that,the model can effectively reflect the managerial principal of the airline alliance,that is maximizing total revenue and fairly distributing the revenue among member airlines.
基金Project supported by the National Natural Science Foundation of China(Nos.40174050,4047065)
文摘In a semi-infinite aquifer bounded by a channel, a transient flow model is constructed for phreatic water subjected to vertical and horizontal seepage. Based on the first linearized Boussinesq equation, the analytical solution of the model is obtained by Laplace transform. Having proven the transformation between the analytical solution and some relevant classic formulas, suitable condition for each of these formulas is demonstrated. On the base of the solution, the variation of transient flow process caused by the variables, such as vertical infiltration intensity, fluctuation range of river stage, aquifer parameters such as transmissivity and specific yield, and the distance from calculating point to channel boundary, are analyzed quantitatively one by one. Lagging effect will happen to the time, when phreatic water gets its maximum fluctuation velocity, response to the varying of the variables stated above. The condition for some variables to form equivalent lagging effect is demonstrated. Corresponding to the mathematical charac teristics of the analytical solution, the physical implication and the fluctuation rule of groundwater level are discussed.
基金National Key Basic Research Development Program“973”(2013CB430103)State Key Laboratory of Severe Weather,Chinese Academy Meteorological Sciences(2015LASW-A07)Project Supported by the Jiangsu Province Ordinary University Graduate Student Scientific Research and Innovation Program(CXZZ12_0495)
文摘Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.
文摘Natural convective heat transfer from a heated horizontal and vertical surfaces directly exposed into air which vertical fins, attached to a surface, project vertically downwards has been numerically studied. It has been assumed that the fins are everywhere at the temperature of the surface. The governing equations, written in dimensionless form, have been solved using the finite element procedure. The results show that vertical plate with vertical fins gives the best performance for natural cooling.
基金supported by the National Key R&D Program of China [grant number 2018YFC0809400]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDA17010105]+1 种基金the Key R&D Program of Jiangxi Province of China(Grant/Award Number:20171BBG70005)the National Natural Science Foundation of China [grant number 41775046]
文摘For better understanding the variation of helicity and its governing mechanisms,based on the primary momentum equation under the local Cartesian coordinate,a set of horizontal and vertical helicity equations are derived in this study.On this basis,a storm-relative helicity budget equation is derived,the main factors that govern the variation of helicity are discussed,and the key mechanisms underlying the helicity variation are illustrated by using schematic images.Both scale analysis and real case diagnosis are used to compare the relative importance of di erent factors on the variation of helicity.For a meso-α system,it is found that:(i)horizontal helicity is much larger than vertical helicity,and they show signi cantly di erent variation mechanisms;(ii)for the vertical helicity,the vertical perturbation pressure gradient force,buoyancy,the diver-gence-related e ect,and the conversion between vertical and horizontal helicity govern its variation(whereas,the conversion is negligible for the evolution of horizontal helicity);and(iii)baroclinity is crucial for the variation of horizontal helicity,but it is only of secondary importance for the vertical helicity variation.
基金National Key R&D Program of China(2016YFA0602701)National Natural Science Foundation of China(42075064)
文摘We set four sets of simulation experiments to explore the impacts of horizontal resolution(HR)and vertical resolution(VR)on the microphysical structure and boundary layer fluxes of tropical cyclone(TC)Hato(2017).The study shows that higher HR tends to strengthen TC.Increasing VR in the upper layers tends to weaken TC,while increasing VR in the lower layers tends to strengthen TC.Simulated amounts of all hydrometeors were larger with higher HR.Increasing VR at the upper level enhanced the mixing ratios of cloud ice and cloud snow,while increasing VR at the lower level elevated the mixing ratios of graupel and rainwater.HR has greater impact on the distributions of hydrometeors.Higher HR has a more complete ring structure of the eyewall and more concentrated hydrometeors along the cloud wall.Increasing VR at the lower level has little impact on the distribution of TC hydrometeors,while increasing VR at the upper level enhances the cloud thickness of the eyewall area.Surface latent heat flux(SLHF)is influenced greatly by resolution.Higher HR leads to larger water vapor fluxes and larger latent heat,which would result in a stronger TC.A large amount of false latent heat was generated when HR was too high,leading to an extremely strong TC,VR has a smaller impact on SLHF than HR.But increasing VR at the upper-level reduces the SLHF and weakens TC,and elevating VR at the lower-level increases the SLHF and strengthens TC.The changes in surface water vapor flux and SLHF were practically identical and the simulation results were improved when HR and VR were more coordinated.The friction velocity was greater with higher VR.Enhancing VR at the lower level increased the friction velocity,while increasing VR at the upper level reduced it.
基金supported by the Soonchunhyang University Research Fund and 2018 Ulsan University Hospital Research Grant(UUH-2018-12)(Grantee:JYP,http://www.uuh.ulsan.kr).The authors are grateful for their supports.
文摘Subjective visual vertical(SVV)and subjective visual horizontal(SVH)tests can be used to evaluate the perception of verticality and horizontality,respectively,and can aid the diagnosis of otolith dysfunction in clinical practice.In this study,SVV and SVH screen version tests are implemented using virtual reality(VR)equipment;the proposed test method promotes a more immersive feeling for the subject while using a simple equipment configuration and possessing excellent mobility.To verify the performance of the proposed VR-based SVV and SVH tests,a reliable comparison was made between the traditional screen-based SVV and SVH tests and the proposed method,based on 30 healthy subjects.The average results of our experimental tests on the VR-based binocular SVV and SVH equipment were−0.15◦±1.74 and 0.60◦±1.18,respectively.The proposed VR-based method satisfies the normal tolerance for horizontal or vertical lines,i.e.,a±3◦error,as defined in previous studies,and it can be used to replace existing test methods.