Air gun arrays are often used in marine energy exploration and marine geological surveys.The study of the single bubble dynamics and multibubbles produced by air guns interacting with each other is helpful in understa...Air gun arrays are often used in marine energy exploration and marine geological surveys.The study of the single bubble dynamics and multibubbles produced by air guns interacting with each other is helpful in understanding pressure signals.We used the van der Waals air gun model to simulate the wavelets of a sleeve gun of various offsets and arrival angles.Several factors were taken into account,such as heat transfer,the thermodynamically open quasi-static system,the vertical rise of the bubble,and air gun post throttling.Marine vertical cables are located on the seafloor,but hydrophones are located in seawater and are far away from the air gun array vertically.This situation conforms to the acquisition conditions of the air gun far-field wavelet and thus avoids the problems of ship noise,ocean surges,and coupling.High-quality 3D wavelet data of air gun arrays were collected during a vertical cable test in the South China Sea in 2017.We proposed an evaluation method of multidimensional facial features,including zeropeak amplitude,peak-peak amplitude,bubble period,primary-to-bubble ratio,frequency spectrum,instantaneous amplitude,instantaneous phase,and instantaneous frequency,to characterize the 3D air gun wave field.The match between the facial features in the field and simulated data provides confidence for the use of the van der Waals air gun model to predict air gun wavelet and facial features to evaluate air gun array.展开更多
The vertical cable method for acquiring and processing pre-stack 3-D marine seismic data is based on the technology developed by the US Navy for antisubmarine warfare. In order to achieve the maximum utili- zation of ...The vertical cable method for acquiring and processing pre-stack 3-D marine seismic data is based on the technology developed by the US Navy for antisubmarine warfare. In order to achieve the maximum utili- zation of vertical cable field data, a new separation method of the up-going and down-going wave fields of the vertical cable data processing was developed in this paper, which is different from the separation of the down-going and up-going wave fields of normal VSP data processing. In tests with synthetic modeling data and actual field data, this newly developed method performs well and is also computationally simpler without pre-assumption conditions.展开更多
Seismic illumination plays an important role in subsurface imaging. A better image can be expected either through optimizing acquisition geometry or introducing more advanced seismic mi- gration and/or tomographic inv...Seismic illumination plays an important role in subsurface imaging. A better image can be expected either through optimizing acquisition geometry or introducing more advanced seismic mi- gration and/or tomographic inversion methods involving illumination compensation. Vertical cable survey is a potential replacement of traditional marine seismic survey for its flexibility and data quality. Conventional vertical cable data processing requires separation of primaries and multiples before migration. We proposed to use multi-scale full waveform inversion (FWI) to improve illumination coverage of vertical cable survey. A deep water velocity model is built to test the capability of multi-scale FWI in detecting low velocity anomalies below seabed. Synthetic results show that multi-scale FWI is an effective model building tool in deep-water exploration. Geometry optimization through target ori- ented illumination analysis and multi-scale FWI may help to mitigate the risks of vertical cable survey. The combination of multi-scale FWI, low-frequency data and multi-vertical-cable acquisition system may provide both high resolution and high fidelity subsurface models.展开更多
An air gun generates acoustic signals for seismic exploration by releasing a high-pressure gas.A large error is always gradually introduced into the ideal-gas model when the pressure in the air-gun chamber exceeds 100...An air gun generates acoustic signals for seismic exploration by releasing a high-pressure gas.A large error is always gradually introduced into the ideal-gas model when the pressure in the air-gun chamber exceeds 100 atm.In the van der Waals non-ideal-gas theory,the gas in the air gun can be regarded as an actual gas,and the error is less than 2%.The van der Waals model is established in combination with the quasi-static open thermodynamic system and bubble-motion equation by considering the bubble rise,bubble interaction,and throttling eff ect.The mismatch between the van der Waals and ideal-gas models is related to the pressure.Theoretically,under high-pressure conditions,the van der Waals air-gun model yields results that are closer to the measured results.Marine vertical cables are extended to the seafl oor using steel cables that connect the cement blocks,but the corresponding hydrophones are suspended in the seawater.Thus,noise associated with ships,ocean surges,and coupling problems is avoided,and the signal-to-noise ratio and resolution of marine seismic data are improved.This acquisition method satisfies the conditions of recording air-gun far-fi eld wavelets.According to an actual vertical-cable observation system,the van der Waals air-gun model is used to model the wavelet of different azimuth and take-off angles.The characteristics of the experimental and simulated data demonstrate good agreement,which indicates that the van der Waals method is accurate and reliable.The accuracy of the model is directly related to the resolution,thus aff ecting the resolution ability of the stratum.展开更多
The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer r...The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer result insignificant lateral variations in its seismic velocity, especially in deep marine environments. Failure to compensate for these velocity inhomogeneities will introduce significant artifacts in constructing crustal velocity models using seismic tomography. In this study, we conduct numerical experiments to investigate the impact of heterogeneous seismic velocities in seawater on tomographic inversion for crustal velocity models. Experiments that include lateral variation in seawater velocity demonstrated that the modeled crustal velocities were contaminated by artifacts from tomographic inversions when assuming a homogeneous water layer. To suppress such artifacts, we propose two strategies:(1) simultaneous inversion of water velocities and the crustal velocities;(2) layer-stripping inversion during which to first invert for seawater velocity and then correct the travel times before inverting for crustal velocities. The layer-stripping inversion significantly improves the modeling of variation in seawater velocity when preformed with seismic sensors deployed on the ocean bottom and in the water column. Such strategies improve crustal modeling via wide-angle seismic surveys in deep-marine environment.展开更多
基金the National Natural Science Foundation of China(Nos.91958206,91858215)the National Key Research and Development Program Pilot Project(Nos.2018YFC1405901,2017YFC0307401)+1 种基金the Fundamental Research Funds for the Central Univer-sities(No.201964016)the Marine Geological Survey Program of China Geological Survey(No.DD20190819)。
文摘Air gun arrays are often used in marine energy exploration and marine geological surveys.The study of the single bubble dynamics and multibubbles produced by air guns interacting with each other is helpful in understanding pressure signals.We used the van der Waals air gun model to simulate the wavelets of a sleeve gun of various offsets and arrival angles.Several factors were taken into account,such as heat transfer,the thermodynamically open quasi-static system,the vertical rise of the bubble,and air gun post throttling.Marine vertical cables are located on the seafloor,but hydrophones are located in seawater and are far away from the air gun array vertically.This situation conforms to the acquisition conditions of the air gun far-field wavelet and thus avoids the problems of ship noise,ocean surges,and coupling.High-quality 3D wavelet data of air gun arrays were collected during a vertical cable test in the South China Sea in 2017.We proposed an evaluation method of multidimensional facial features,including zeropeak amplitude,peak-peak amplitude,bubble period,primary-to-bubble ratio,frequency spectrum,instantaneous amplitude,instantaneous phase,and instantaneous frequency,to characterize the 3D air gun wave field.The match between the facial features in the field and simulated data provides confidence for the use of the van der Waals air gun model to predict air gun wavelet and facial features to evaluate air gun array.
文摘The vertical cable method for acquiring and processing pre-stack 3-D marine seismic data is based on the technology developed by the US Navy for antisubmarine warfare. In order to achieve the maximum utili- zation of vertical cable field data, a new separation method of the up-going and down-going wave fields of the vertical cable data processing was developed in this paper, which is different from the separation of the down-going and up-going wave fields of normal VSP data processing. In tests with synthetic modeling data and actual field data, this newly developed method performs well and is also computationally simpler without pre-assumption conditions.
基金the financial support by the National Natural Science Foundation of China (Nos.41304109 and 41230318)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Nos.CUG130103 and CUG110803)
文摘Seismic illumination plays an important role in subsurface imaging. A better image can be expected either through optimizing acquisition geometry or introducing more advanced seismic mi- gration and/or tomographic inversion methods involving illumination compensation. Vertical cable survey is a potential replacement of traditional marine seismic survey for its flexibility and data quality. Conventional vertical cable data processing requires separation of primaries and multiples before migration. We proposed to use multi-scale full waveform inversion (FWI) to improve illumination coverage of vertical cable survey. A deep water velocity model is built to test the capability of multi-scale FWI in detecting low velocity anomalies below seabed. Synthetic results show that multi-scale FWI is an effective model building tool in deep-water exploration. Geometry optimization through target ori- ented illumination analysis and multi-scale FWI may help to mitigate the risks of vertical cable survey. The combination of multi-scale FWI, low-frequency data and multi-vertical-cable acquisition system may provide both high resolution and high fidelity subsurface models.
基金This work has been supported by the following:the National Natural Science Foundation of China(No.91958206,91858215)the National Key Research and Development Program Pilot Project(No.2018YFC1405901,2017YFC0307401)+1 种基金the Fundamental Research Funds for the Central Universities(No.201964016)the Marine Geological Survey Program of China Geological Survey(No.DD20190819).
文摘An air gun generates acoustic signals for seismic exploration by releasing a high-pressure gas.A large error is always gradually introduced into the ideal-gas model when the pressure in the air-gun chamber exceeds 100 atm.In the van der Waals non-ideal-gas theory,the gas in the air gun can be regarded as an actual gas,and the error is less than 2%.The van der Waals model is established in combination with the quasi-static open thermodynamic system and bubble-motion equation by considering the bubble rise,bubble interaction,and throttling eff ect.The mismatch between the van der Waals and ideal-gas models is related to the pressure.Theoretically,under high-pressure conditions,the van der Waals air-gun model yields results that are closer to the measured results.Marine vertical cables are extended to the seafl oor using steel cables that connect the cement blocks,but the corresponding hydrophones are suspended in the seawater.Thus,noise associated with ships,ocean surges,and coupling problems is avoided,and the signal-to-noise ratio and resolution of marine seismic data are improved.This acquisition method satisfies the conditions of recording air-gun far-fi eld wavelets.According to an actual vertical-cable observation system,the van der Waals air-gun model is used to model the wavelet of different azimuth and take-off angles.The characteristics of the experimental and simulated data demonstrate good agreement,which indicates that the van der Waals method is accurate and reliable.The accuracy of the model is directly related to the resolution,thus aff ecting the resolution ability of the stratum.
基金supported by the National Natural Science Foundation of China (No.41230318)the Natural Science Foundation of Shandong Province (No.ZR2014DM006)+1 种基金the China Postdoctoral Science Foundation (No.2015M582138)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education
文摘The seawater column is typically taken as a homogeneous velocity layer in wide-angle crustal seismic surveys in marine environments. However, heterogeneities in salinity and temperature throughout the seawater layer result insignificant lateral variations in its seismic velocity, especially in deep marine environments. Failure to compensate for these velocity inhomogeneities will introduce significant artifacts in constructing crustal velocity models using seismic tomography. In this study, we conduct numerical experiments to investigate the impact of heterogeneous seismic velocities in seawater on tomographic inversion for crustal velocity models. Experiments that include lateral variation in seawater velocity demonstrated that the modeled crustal velocities were contaminated by artifacts from tomographic inversions when assuming a homogeneous water layer. To suppress such artifacts, we propose two strategies:(1) simultaneous inversion of water velocities and the crustal velocities;(2) layer-stripping inversion during which to first invert for seawater velocity and then correct the travel times before inverting for crustal velocities. The layer-stripping inversion significantly improves the modeling of variation in seawater velocity when preformed with seismic sensors deployed on the ocean bottom and in the water column. Such strategies improve crustal modeling via wide-angle seismic surveys in deep-marine environment.