Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follo...Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follows a nonlinear law for the two geometry mesa structures which we employ in VCSEL. Theoretical analysis indicates that mesa structure geometry influences oxide growth rate at higher temperatures.展开更多
High slope efficiency and high power selected oxide-confined 850nm VCSELs grown by MOCVD are reported.The slope efficiency and the threshold current respectively are 0 82mW/mA and 2 59mA with a 9μm diameter oxidati...High slope efficiency and high power selected oxide-confined 850nm VCSELs grown by MOCVD are reported.The slope efficiency and the threshold current respectively are 0 82mW/mA and 2 59mA with a 9μm diameter oxidation aperture at 25℃.The maximum power of 16mW is obtained at 23mA current bias.The minimum threshold current can be as low as 570μA with a 5μm diameter oxidation aperture at 25℃.The maximum saturated power is 5 5mW.展开更多
Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region...Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.展开更多
We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-...We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.展开更多
A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several param...A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.展开更多
Polarization switching (PS) dynamics and synchronization performances of two mutually coupled vertical-cavity surface-emitting lasers (VCSELs) are studied theoretically in this paper. A group of dimensionless rate...Polarization switching (PS) dynamics and synchronization performances of two mutually coupled vertical-cavity surface-emitting lasers (VCSELs) are studied theoretically in this paper. A group of dimensionless rate equations is derived to describe our model. While analysing the PS characteristics, we focus on the effects of coupling rate and frequency detuning regarding different mutual injection types. The results indicate that the x-mode injection defers the occurrence of PS, while the y-mode injection leads the PS to occur at a lower current. Strong enough polarization-selective injection can suppress the PS. Moreover, if frequency detuning is considered, the effects of polarization-selective mutual injection will be weakened. To evaluate the synchronization performance, the correlation coefficients and output dynamics of VCSELs with both pure mode and mixed mode polarizations are given. It is found that performance of complete synchronization is sensitive to the frequency mismatch but it is little affected by mixed mode polarizations, which is opposite to the case of injection-locking synchronization.展开更多
We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended abov...We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended above an active region is utilized. Applied bridge-substrate bias produces an electrostatic force which reduces the spacing of air-gap and tunes the resonant wavelength toward a shorter wavelength (blue-shift), Good laser characteristics are obtained: such as continuous tuning ranges over 11 nm near 940 nm for 0-9 V tuning bias, the peak output power near 1 mW and the full-width-half-maximum limited to approximately 3.2-6.8 rim. A detailed simulation of the micromechanical and optical characteristics of these devices is performed, and the ratio of bridge displacement to wavelength shift has been found to be 3:1.展开更多
The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. T...The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.展开更多
A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of...A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.展开更多
The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the tr...The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.展开更多
Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is es...Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.展开更多
It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally diff...It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty h, deriving the parameters relat^i~g to the quantum well structure. In this paper, we describe an efl:icient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AllnGaAs-AIGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs.展开更多
Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer functio...In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.展开更多
Taking into account oxidation temperature, N2 carrier gas flow, and the geometry of the mesa structures this paper investigates the characteristics of selective oxidation during the fabrication of the vertical cavity ...Taking into account oxidation temperature, N2 carrier gas flow, and the geometry of the mesa structures this paper investigates the characteristics of selective oxidation during the fabrication of the vertical cavity surface emitting laser (VCSEL) in detail. Results show that the selective oxidation follows a law which differs from any reported in the literature. Below 435℃ selective oxidation of Al0.98Ga0.02As follows a linear growth law for the two mesa structures employed in VCSEL. Above 435℃ approximately increasing parabolic growth is found, which is influenced by the geometry of the mesa structures. Theoretical analysis on the difference between the two structures for the initial oxidation has been performed, which demonstrates that the geometry of the mesa structures does influence on the growth rate of oxide at higher temperatures.展开更多
A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold curre...A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved, which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed opera- tion. While under continuous-wave (CW) operation, the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from -12°C to 96 °C and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current.展开更多
The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, an...The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.展开更多
The output performance of a 980-nm broad-area vertical-cavity surface-emitting laser (VCSEL) is improved by optimizing the p-electrode diameter in this study. Based on a three-dimensional finite-element method, the ...The output performance of a 980-nm broad-area vertical-cavity surface-emitting laser (VCSEL) is improved by optimizing the p-electrode diameter in this study. Based on a three-dimensional finite-element method, the current density distribution within the active region of the VCSEL is optimized through the appropriate adjustment of the p-electrode diameter, and uniform current-density distribution is achieved. Then, the effects of this optimization are studied experimentally. The L-I-V characteristics under different temperatures of the VCSELs with different p-electrode diameters are investigated, and better temperature stability is demonstrated in the VCSEL with an optimized p-electrode diameter. The far-field measurements show that with an injected current of 2 A, the far-field divergence angle of the VCSEL with an optimized p-electrode diameter is 9°, which is much lower than the far-field angle of the VCSEL without this optimization. Also the VCSEL with an optimized p-electrode diameter shows a better near-field distribution.展开更多
Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration ...Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration for extra-broad-area and oxide-confined vertical-cavity surface-emitting lasers. In this work an equivalent circuit network model is used. The resistance of the continuously-graded distributed Bragg reflectors (DBRs), the current diffusion and the temperature effect due to different electric-contact areas are calculated and analyzed at first, as these parameters affect one another and are the key factors in determining the gain and thermal carrier loss. Finally, the gain and thermal carrier loss distributions are calculated and discussed.展开更多
The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the ...The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.展开更多
文摘Lateral oxidation in vertical cavity surface emitting lasers (VCSELs) is described,and its characteristics are investigated.A linear growth law is found for stripe mesas. However, oxide growth (above 435℃ ) follows a nonlinear law for the two geometry mesa structures which we employ in VCSEL. Theoretical analysis indicates that mesa structure geometry influences oxide growth rate at higher temperatures.
文摘High slope efficiency and high power selected oxide-confined 850nm VCSELs grown by MOCVD are reported.The slope efficiency and the threshold current respectively are 0 82mW/mA and 2 59mA with a 9μm diameter oxidation aperture at 25℃.The maximum power of 16mW is obtained at 23mA current bias.The minimum threshold current can be as low as 570μA with a 5μm diameter oxidation aperture at 25℃.The maximum saturated power is 5 5mW.
基金This work was supported by the National Natural Science Foundation of China(Nos.U21A20493,62104204,and 62234011)the National Key Research and Development Program of China(No.2017YFE0131500)the President’s Foundation of Xiamen University(No.20720220108).
文摘Room temperature low threshold lasing of green GaNbased vertical cavity surface emitting laser(VCSEL)was demonstrated under continuous wave(CW)operation.By using self-formed InGaN quantum dots(QDs)as the active region,the VCSEL emitting at 524.0 nm has a threshold current density of 51.97 A cm^(-2),the lowest ever reported.The QD epitaxial wafer featured with a high IQE of 69.94%and theδ-function-like density of states plays an important role in achieving low threshold current.Besides,a short cavity of the device(~4.0λ)is vital to enhance the spontaneous emission coupling factor to 0.094,increase the gain coefficient factor,and decrease the optical loss.To improve heat dissipation,AlN layer was used as the current confinement layer and electroplated copper plate was used to replace metal bonding.The results provide important guidance to achieving high performance GaN-based VCSELs.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60908012 and 61076148)the Foundation of Beijing Municipal Education Commission, China (Grant No. KM201010005030)
文摘We presented 980-nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) with a 16 -um oxide aperture. Optical power, voltage, and emission wavelength are measured in an ambient temperature range of 5 ℃-80 ℃. Measurements combined with an empirical model are used to analyse the power dissipation in the device and the physical mechanism contributing to the thermal rollover phenomenon in VCSEL. It is found that the carrier leakage induced selfheating in the active region and the Joule heating caused by the series resistance are the main sources of power dissipation. In addition, carrier leakage induced self-heating increases as the injection current increases, resulting in a rapid decrease of the internal quantum efficiency, which is a dominant contribution to the thermal rollover of the VCSEL at a larger current. Our study provides useful guidelines to design a 980-nm oxide-confined VCSEL for thermal performance enhancement.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026,61204011and U1037602the Natural Science Foundation of Beijing under Grant Nos 4132006,4102003,and 4112006+1 种基金the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No KM201210005004the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20121103110018
文摘A three-dimensional electrical-thermal coupling model based on the finite element method is applied to study thermal properties of implant-defined vertical cavity surface emitting laser (VCSEL) arrays. Several parameters including inter-element spacing, scales, injected current density and substrate temperature are considered. The actual temperatures obtained through experiment are in excellent agreement with the calculated results, which proves the accuracy of the model. Due to the serious thermal problem, it is essential to design arrays of low self-heating. The analysis can provide a foundation for designing VCSEL arrays in the future.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10174057 and 90201011), and the Foundation for Key Program of Ministry of Education, China (Grant No 2005-105148).
文摘Polarization switching (PS) dynamics and synchronization performances of two mutually coupled vertical-cavity surface-emitting lasers (VCSELs) are studied theoretically in this paper. A group of dimensionless rate equations is derived to describe our model. While analysing the PS characteristics, we focus on the effects of coupling rate and frequency detuning regarding different mutual injection types. The results indicate that the x-mode injection defers the occurrence of PS, while the y-mode injection leads the PS to occur at a lower current. Strong enough polarization-selective injection can suppress the PS. Moreover, if frequency detuning is considered, the effects of polarization-selective mutual injection will be weakened. To evaluate the synchronization performance, the correlation coefficients and output dynamics of VCSELs with both pure mode and mixed mode polarizations are given. It is found that performance of complete synchronization is sensitive to the frequency mismatch but it is little affected by mixed mode polarizations, which is opposite to the case of injection-locking synchronization.
基金Project supported by the National Natural Science Foundation of China (Grant No 60506012), the Fok Ying-Tong Foundation (Grant No 101062), the Natural Science Foundation of Beijing China (Grant No KZ200510005003), the Science Star of Beijing China (Grant No 2005A11), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality China (Grant No 20051D0501502).Acknowledgement The authors gratefully acknowledge the staff of M0CVD, Zhou Deshu, and Han Jinru for technical assistance. The authors also thank Professor Academician Chen Lianghui, Professor Tan Manqing and Mr Wang Xuming at the Institute of Semiconductors, CAS for technological support in device fabrication.
文摘We report the study on a short wavelength-tunable vertical-cavity surface-emitting laser utilizing a monolithically integrated bridge tuning microelectromechanical system. A deformable-bridge top mirror suspended above an active region is utilized. Applied bridge-substrate bias produces an electrostatic force which reduces the spacing of air-gap and tunes the resonant wavelength toward a shorter wavelength (blue-shift), Good laser characteristics are obtained: such as continuous tuning ranges over 11 nm near 940 nm for 0-9 V tuning bias, the peak output power near 1 mW and the full-width-half-maximum limited to approximately 3.2-6.8 rim. A detailed simulation of the micromechanical and optical characteristics of these devices is performed, and the ratio of bridge displacement to wavelength shift has been found to be 3:1.
基金Project supported the National Key Basic Research and Development Program of China (Grant Nos.2012CB921304 and 2013CB632805)the National Natural Science Foundation of China (Grant Nos.60990313,61306120,and 6106003)the Foundation of Fuzhou University (Grant No.022498)
文摘The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the National Natural Science Foundation of China (Grant No. 61076044)the Natural Science Foundation of Beijing,China(Grant Nos. 4092007 and 4102003)
文摘A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the Beijing Municipal Natural Science Foundation,China (Grant Nos. 4092007,4112006,4102003,and 4132006)+1 种基金the National Natural Science Foundation of China (Grant Nos. 61076044,61036002,61036009,and 60978067)the Doctoral Fund of the Ministry of Education of China (Grant No. 20121103110018)
文摘The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
文摘Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
文摘It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty h, deriving the parameters relat^i~g to the quantum well structure. In this paper, we describe an efl:icient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AllnGaAs-AIGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs.
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
文摘In this work, the characteristics of the photonic crystal tunneling injection quantum dot vertical cavity surface emitting lasers(Ph C-TIQD-VCSEL) are studied through analyzing a modified modulation transfer function. The function is based on the rate equations describing the carrier dynamics at different energy levels of dot and injector well. Although the frequency modulation response component associated with carrier dynamics in wetting layer(WL) and at excited state(ES) levels of dots limits the total bandwidth in conventional QD-VCSEL, our study shows that it can be compensated for by electron tunneling from the injector well into the dot in TIQD structure. Carrier back tunneling time is one of the most important parameters, and by increment of that, the bias current dependence of the total bandwidth will be insignificant. It is proved that at high bias current, the limitation of the WL-ES level plays an important role in reducing the total bandwidth and results in rollovers on 3-d B bandwidth-I curves. In such a way, for smaller air hole diameter of photonic crystal, the effect of this reduction is stronger.
文摘Taking into account oxidation temperature, N2 carrier gas flow, and the geometry of the mesa structures this paper investigates the characteristics of selective oxidation during the fabrication of the vertical cavity surface emitting laser (VCSEL) in detail. Results show that the selective oxidation follows a law which differs from any reported in the literature. Below 435℃ selective oxidation of Al0.98Ga0.02As follows a linear growth law for the two mesa structures employed in VCSEL. Above 435℃ approximately increasing parabolic growth is found, which is influenced by the geometry of the mesa structures. Theoretical analysis on the difference between the two structures for the initial oxidation has been performed, which demonstrates that the geometry of the mesa structures does influence on the growth rate of oxide at higher temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60908012 and 61076148)the Foundation of Beijing Municipal Education Commission,China (Grant No.KM201010005030)
文摘A low-threshold and high-power oxide-confined 850-nm AlInGaAs strained quantum-well (QW) vertical-cavity surface-emitting laser (VCSEL) based on an intra-cavity contacted structure is fabricated. A threshold current of 1.5 mA for a 22 μm oxide aperture device is achieved, which corresponds to a threshold current density of 0.395 kA/cm2. The peak output optical power reaches 17.5 mW at an injection current of 30 mA at room temperature under pulsed opera- tion. While under continuous-wave (CW) operation, the maximum power attains 10.5 mW. Such a device demonstrates a high characteristic temperature of 327 K within a temperature range from -12°C to 96 °C and good reliability under a lifetime test. There is almost no decrease of the optical power when the device operates at a current of 5 mA at room temperature under the CW injection current.
基金supported by the National Key Basic Research Special Foundation of China (Grant No. 2011CB922000)the National Natural Science Foundation of China (Grant Nos. 61025025 and 60838003)the National High Technology Research and Development Program of China (Grant Nos. 2007AA03Z410 and 2007AA03Z408)
文摘The 850-nm oxide-confined vertical-cavity surface-emitting lasers with petal-shape holey structures are presented. An area-weighted average refractive index model is given to analyse their effective index profiles, and the graded index distribution in the holey region is demonstrated. The index step between the optical aperture and the holey region is obtained which is related merely to the etching depth. Four types of holey vertical-cavity surface-emitting lasers with different parameters are fabricated as well as the conventional oxide-confined vertical-cavity surface-emitting laser. Compared with the conventional oxide-confined vertical-cavity surface-emitting laser without etched holes, the holey vertical-cavity surface-emitting laser possesses an improved beam quality due to its graded index distribution, but has a lower output power, higher threshold current and lower slope efficiency. With the hole number increased, the holey vertical-cavity surface-emitting laser can realize the single-mode operation throughout the entire current range, and reduces the beam divergence further. The loss mechanism is used to explain the single-mode characteristic, and the reduced beam divergence is attributed to the shallow etching. High coupling efficiency of 86% to a multi-mode fibre is achieved for the single-mode device in the experiment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61204056,61234004,90923037,and 11074247)the Jilin ProvincialScience and Technology Development Plan Item (Grant Nos. 201105025 and 20116011)
文摘The output performance of a 980-nm broad-area vertical-cavity surface-emitting laser (VCSEL) is improved by optimizing the p-electrode diameter in this study. Based on a three-dimensional finite-element method, the current density distribution within the active region of the VCSEL is optimized through the appropriate adjustment of the p-electrode diameter, and uniform current-density distribution is achieved. Then, the effects of this optimization are studied experimentally. The L-I-V characteristics under different temperatures of the VCSELs with different p-electrode diameters are investigated, and better temperature stability is demonstrated in the VCSEL with an optimized p-electrode diameter. The far-field measurements show that with an injected current of 2 A, the far-field divergence angle of the VCSEL with an optimized p-electrode diameter is 9°, which is much lower than the far-field angle of the VCSEL without this optimization. Also the VCSEL with an optimized p-electrode diameter shows a better near-field distribution.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974012)
文摘Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration for extra-broad-area and oxide-confined vertical-cavity surface-emitting lasers. In this work an equivalent circuit network model is used. The resistance of the continuously-graded distributed Bragg reflectors (DBRs), the current diffusion and the temperature effect due to different electric-contact areas are calculated and analyzed at first, as these parameters affect one another and are the key factors in determining the gain and thermal carrier loss. Finally, the gain and thermal carrier loss distributions are calculated and discussed.
文摘The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.