Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In orde...Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.展开更多
We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient...We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient of gravity anomaly). The vertical gradient was obtained from direct measurement and terrain calcula- tion. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.展开更多
We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features...We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features of the model for the influence of the deformation of the DGZ on the local gravity field. We concluded that land-based gravity is not sensitive to the thickness of the DGZ and that the magnitude of the contribution of the DGZ is one order less than that of the volume strain with the same displacement.展开更多
The role of vertical gradient of gravity anomaly in the solution and interpretation of geological and geophysical problems on superficial layer is increasingly evident. However, it is difficult to directly observe the...The role of vertical gradient of gravity anomaly in the solution and interpretation of geological and geophysical problems on superficial layer is increasingly evident. However, it is difficult to directly observe the vertical gradient of gravity anomaly in mountainous area. Moreover,aerial and satellite gravity gradient measurments have not been put into practice up to date yet.The vertical gradient of gravity anomaly is calculated by use of topographic data and several problems concerned are investigated and discussed. It turns out in theory and practice that the relative error of the vertical gradient determined with the method is only 5%, and when the vertical gradient of gravity anomaly reaches the maximum 1 000 ns<sup>-2</sup> the error is only 50 ns<sup>-2</sup>. In addition, how to divide ring zones in calculation and the errors caused by the inaccuracy of landform elevation and rock density has been quantitatively analysed.展开更多
The gravity anomaly and vertical gravity gradient due to anomalous geological bodies are mainly computed by numerical methods,so it is difficult and time-consuming to use the gravity-geological method to invert seaflo...The gravity anomaly and vertical gravity gradient due to anomalous geological bodies are mainly computed by numerical methods,so it is difficult and time-consuming to use the gravity-geological method to invert seafloor topography.This paper addresses this issue by deriving an expression for gravity generated by a cylinder based on a series expansion.The choice of number for terms in the series is estimated by comparing with the numerical method,especially when the depth H=4000m,the accuracy of 1 mGal(1 Gal=10^(-2)m/s^(2))can be achieved when the series are 9.The expressions can be used to establish the relationships between the shape of an anomalous body and the generated vertical gravity and vertical gravity gradient,respectively.Finally,the potential applications of the expressions in inverting seafloor topography are illustrated by synthetic examples.展开更多
文摘Across a gradient belt of the Western Sichuan Plateau,geohazards have seriously limited economic and social development.According to incomplete statistics,15,673 geohazards have been recorded in the study area.In order to mitigate the threat of geohazards to human engineering activities in the region,an overall understanding of the distribution pattern of geohazards and susceptibility assessment are necessary.In this paper,a gradient belt of the Western Sichuan Plateau and its zoning criteria were defined.Subsequently,on the basis of relief amplitude,distance to faults,rainfall,and human activities,three indicators of endogenic process were introduced:Bouguer gravity anomaly gradient,vertical deformation gradient,and horizontal deformation gradient.Thereafter,the distribution patterns of geohazards were investigated through mathematical statistics and ArcGIS software.By randomly selecting 10,449 hazards,a geohazard susceptibility map was generated using the Information Value(IV)model.Finally,the IV model was validated against 5224 hazards using the Area Under Curve(AUC)method.The results show that 47.6%of the geohazards were distributed in the zone of steep slope.Geohazards showed strong responses to distance to faults,human activities,and annual rainfall.The distribution of geohazards in the gradient belt of the Western Sichuan Plateau is more sensitive to vertical internal dynamics factors(such as vertical deformation gradient and Bouguer gravity anomaly gradient)without any apparent sensitivity to horizontal internal dynamics factors.The areas of high and very-high risk account for up to 32.22%,mainly distributed in the Longmenshan and Anning River faults.According to the AUC plot,the success rate of the IV model for generating the susceptibility map is 76%.This susceptibility map and geohazard distribution pattern can provide a reference for geological disaster monitoring,preparation of post-disaster emergency measures,and town planning.
文摘We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient of gravity anomaly). The vertical gradient was obtained from direct measurement and terrain calcula- tion. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.
基金supported by the Special Earthquake Research Project of China Earthquake Administration(201208009)and the National Natural Science Foundation of China(41274083)
文摘We modeled the effect of the deformation of a Density Gradient Zone (DGZ) on a local gravity field using a cubical model and introduced a new method to simulate a complex DGZ (CDGZ). Then, we analyzed the features of the model for the influence of the deformation of the DGZ on the local gravity field. We concluded that land-based gravity is not sensitive to the thickness of the DGZ and that the magnitude of the contribution of the DGZ is one order less than that of the volume strain with the same displacement.
文摘The role of vertical gradient of gravity anomaly in the solution and interpretation of geological and geophysical problems on superficial layer is increasingly evident. However, it is difficult to directly observe the vertical gradient of gravity anomaly in mountainous area. Moreover,aerial and satellite gravity gradient measurments have not been put into practice up to date yet.The vertical gradient of gravity anomaly is calculated by use of topographic data and several problems concerned are investigated and discussed. It turns out in theory and practice that the relative error of the vertical gradient determined with the method is only 5%, and when the vertical gradient of gravity anomaly reaches the maximum 1 000 ns<sup>-2</sup> the error is only 50 ns<sup>-2</sup>. In addition, how to divide ring zones in calculation and the errors caused by the inaccuracy of landform elevation and rock density has been quantitatively analysed.
基金Major Research Plan of China(2016YFB0501702)National Nature Science Funds of China(41774089)。
文摘The gravity anomaly and vertical gravity gradient due to anomalous geological bodies are mainly computed by numerical methods,so it is difficult and time-consuming to use the gravity-geological method to invert seafloor topography.This paper addresses this issue by deriving an expression for gravity generated by a cylinder based on a series expansion.The choice of number for terms in the series is estimated by comparing with the numerical method,especially when the depth H=4000m,the accuracy of 1 mGal(1 Gal=10^(-2)m/s^(2))can be achieved when the series are 9.The expressions can be used to establish the relationships between the shape of an anomalous body and the generated vertical gravity and vertical gravity gradient,respectively.Finally,the potential applications of the expressions in inverting seafloor topography are illustrated by synthetic examples.