In order to effectively improve penetration rates and enhance wellbore quality for vertical wells,a new Automatic Vertical Drilling Tool(AVDT)based on Eccentric Braced Structure(EBS)is designed.Applying operating prin...In order to effectively improve penetration rates and enhance wellbore quality for vertical wells,a new Automatic Vertical Drilling Tool(AVDT)based on Eccentric Braced Structure(EBS)is designed.Applying operating principle of rotary steering drilling,AVDT adds offset gravity block automatic induction inclination mechanism.When hole straightening happens,tools take essentric moment to be produced by gravity of offset gravity lock to control the bearing of guide force,so that well straightening is achieved.The normal tool's size of the AVDT is designed as 215.9 mm,other major components'sizes are worked out by the result of theoretical analysis,including the offset angle of EBS.This paper aims to introduce the structure,operating principle,theoretical analysis and describe the key components'parameters setting of the AVDT.展开更多
It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during ver...It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during vertical and fast drilling. High WOB leads to well deviation out of control, and low WOB leads to low rate of penetration (ROP). So considering the rock physical properties, the anisotropy index function of polycrystalline diamond compact (PDC) bit was derived with the structure and cutting performance parameters of the bit, and the effect of natural hole deviation tendencies on the performance of DD-BHA resisting deviation was represented. The concept of elliptic deformation ratio was used to characterize the performance of DD-BHA resisting deviation. Eventually, a model calculating the critical WOB was established. By comparing the model predictions with the measured hole angle changes in the field, the results show that the model predictions are accurate with error less than 5.8%, which can meet the operational requirements in the projects. Furthermore, the model was adopted to justify and guide the operating conditions and parameters during drilling, which shows that the optimum WOB predicted by the model can not only control deviation but also improve ROP effectively. The model is independent on the formation characteristics of blocks, so it can be expanded widely to other oilfields.展开更多
文摘In order to effectively improve penetration rates and enhance wellbore quality for vertical wells,a new Automatic Vertical Drilling Tool(AVDT)based on Eccentric Braced Structure(EBS)is designed.Applying operating principle of rotary steering drilling,AVDT adds offset gravity block automatic induction inclination mechanism.When hole straightening happens,tools take essentric moment to be produced by gravity of offset gravity lock to control the bearing of guide force,so that well straightening is achieved.The normal tool's size of the AVDT is designed as 215.9 mm,other major components'sizes are worked out by the result of theoretical analysis,including the offset angle of EBS.This paper aims to introduce the structure,operating principle,theoretical analysis and describe the key components'parameters setting of the AVDT.
基金Projects(50804040,51004082)supported by the National Natural Science Foundation of China
文摘It is difficult to determine the optimal weight on bit (WOB) of the double-driven bottomhole assembly (DD-BHA, with double stabilizers and a bent housing positive displacement motor (PDM)) which is employed during vertical and fast drilling. High WOB leads to well deviation out of control, and low WOB leads to low rate of penetration (ROP). So considering the rock physical properties, the anisotropy index function of polycrystalline diamond compact (PDC) bit was derived with the structure and cutting performance parameters of the bit, and the effect of natural hole deviation tendencies on the performance of DD-BHA resisting deviation was represented. The concept of elliptic deformation ratio was used to characterize the performance of DD-BHA resisting deviation. Eventually, a model calculating the critical WOB was established. By comparing the model predictions with the measured hole angle changes in the field, the results show that the model predictions are accurate with error less than 5.8%, which can meet the operational requirements in the projects. Furthermore, the model was adopted to justify and guide the operating conditions and parameters during drilling, which shows that the optimum WOB predicted by the model can not only control deviation but also improve ROP effectively. The model is independent on the formation characteristics of blocks, so it can be expanded widely to other oilfields.