Molecular self-assembly is extremely important in many fields, but the characterization of their corresponding intermolecular interactions is still lacking. The C-H stretching Raman band can reflect the hydrophobic in...Molecular self-assembly is extremely important in many fields, but the characterization of their corresponding intermolecular interactions is still lacking. The C-H stretching Raman band can reflect the hydrophobic interactions during the self-assembly process of sodium dodecyl sulfate (SDS) in aqueous solutions. However, the Raman spectra in this region are seriously overlapped by the OH stretching band of water. In this work, vertically polarized Raman spectra were used to improve the detection sensitivity of spectra of C-H region for the first time. The spectral results showed that the first critical micelle concentration and the second critical micelle concentration of SDS in water were 8.5 and 69 mmol/L, respectively, which were consistent with the results given by surface tension measurements. Because of the high sensitivity of vertically polarized Raman spectra, the critical micelle concentration of SDS in a relatively high concentration of salt solution could be obtained in our experiment. The two critical concentrations of SDS in 100 mmol/L NaCl solution were recorded to be 1.8 and 16.5 mmol/L, respectively. Through comparing the spectra and surface tension of SDS in water and in NaCl solution, the self-assembly process in bulk phase and at interface were discussed. The interactions among salt ions, SDS and water molecules were also analyzed. These results demonstrated the vertically polarized Raman spectra could be employed to study the self-assembly process of SDS in water.展开更多
The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the...The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.展开更多
In the ice-covered oceanic region,the collision between sea ice and offshore structures will occur,causing the crushing failure of ice and the vibration of structures.The vibration can result in fatigue damage of stru...In the ice-covered oceanic region,the collision between sea ice and offshore structures will occur,causing the crushing failure of ice and the vibration of structures.The vibration can result in fatigue damage of structure and even endanger the crews’health.It is no doubt that this ice-structure interaction has been noted with great interest by the academic community for a long time and numerous studies have been done through theoretical analysis,experimental statistics and numerical simulation.In this paper,the bond-based Peridynamics method is applied to simulate the interaction between sea ice and wide vertical structures,where sea ice is modeled as elastic-plastic material,with a certain yield condition and failure criterion.Oscillation equation of single-degree-of-freedom is considered to investigate the vibration features of the structure during the interaction process.The damage of ice,ice forces and vibration responses of structure in the duration are obtained through numerical simulation.A parametric investigation is undertaken to identify the key parameters,such as ice thickness,the diameter of structure and relative velocity that trigger the ice crushing,ice forces and vibration responses of the structure.Results indicate that all three parameters have a positive correlation with the overall level of ice force and vibration displacement.Besides,a velocity coefficient is proposed to predict the vibration displacement based on its relation with ice speed.展开更多
The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio of obliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is relate...The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio of obliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is related with various factors. A linear reduction of the mean force of obliquely incident waves is confirmed with an increase in the relative caisson length. Also the characteristics of reflection coefficient of diagonal waves are discussed.展开更多
Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnos...Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.展开更多
The vertical and lateral interactions in a multisheet array of InAs/GaAs quantum dots are analyzed by finite element method (FEM). It is shown that due to the effects of vertical interaction, nucleation prefers to h...The vertical and lateral interactions in a multisheet array of InAs/GaAs quantum dots are analyzed by finite element method (FEM). It is shown that due to the effects of vertical interaction, nucleation prefers to happen above buried quantum dots (QDs). Meanwhile, the effects of lateral interaction adjust the spacing of lateral neighboring QDs. The vertical coupling becomes strong with deceasing GaAs spacer height and increasing number of buried layers, while the lateral coupling becomes strong with increasing InAs wetting layer thickness. The phenomenon that, after successive layers, the spacing and size of QDs islands become progressively more uniform is explained according to the minimum potential energy theory.展开更多
A numerical wave flume is constructed based on the Reynolds Averaged Navier-Stokes (RANS) equations with turbulence closure by a modified k - ε model to study the viscous interactiorrs of waves with vertical breakw...A numerical wave flume is constructed based on the Reynolds Averaged Navier-Stokes (RANS) equations with turbulence closure by a modified k - ε model to study the viscous interactiorrs of waves with vertical breakwaters for different overtopping cases. The goveruing equations, the turbulence model, boundary conditions, and solution method for the nu- merical wave flume are introduced briefly. The reliability of the numerical wave flume is examined by comparing the nu- merical results with the experimental measurements, and good agreements between them indicate the validity of the pre- sent model. The developments of mean velocity fields, the contours of vorticity, and the influences of wave nonlinearity on turbulence field as wave passing through vertical breakwaters are discussed in detail based on the numerical results. It is noted that the vortices at the rear of the lower submerged breakwater are close to the bottum and maytbe induce the scouring to the leeside toe of marine structure in practice. Over all, a conclusion can be obtained from this study that the turbulence in wave field around structure is induced directly by the development of boundary layer on the solid boundary, the nonlinear interaction of free surface with obstaele, and the plunging of overtopping waves.展开更多
In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimat...In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection.展开更多
Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibratio...Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibration of an end-bearing pile in a saturated viscoelastic soil layer is investigated in the frequency domain using the Helmholtz decomposition and variable separation method. The axisymmetrical analytical solutions for vertical vibrations of the pile in a saturated viscoelastic soil layer are obtained, and the analytical expression of the dynamical complex stiffness of the pile top is presented. Responses of dynamic stiffness factor and equivalent damping of pile top with respect to the frequency are shown in figures using a numerical method. Effects of the saturated soil parameters, modulus ratio of the pile to soil, slenderness ratio of pile and pile's Poisson ratio, etc. on the stiffness factor and damping are examined. It is shown that, due to the effect of the transversal deformation of the pile and the radial force of the saturated viscoelastic soil acting on the pile, the dynamic stiffness factor and the damping derived from the axisymmetrical solution are greatly different from those derived from the classical Euler-Bernoulli rod model, especially at some specific excitation frequencies. Therefore, there are limitations on applicability of the Euler-Bernoulli rod model in analyzing verticai vibration of the pile. More accurate analysis should be based on a three-dimensional model.展开更多
A rigorous analytical method is presented for calculating the interaction factor between two identical piles subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decompos...A rigorous analytical method is presented for calculating the interaction factor between two identical piles subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decomposed into an extended soil mass and two fictitious piles characterized respectively by Young's modulus of the soil and that of the difference between the pile and soil. The unknown axial forces along fictitious piles are determined by solving a Fredholm integral equation of the second kind, which imposes the compatibility condition that the axial strains of the fictitious piles are equal to those corresponding to the centroidal axes of the extended soil. The real pile forces and displacements can subequally be calculated based on the determined fictitious pile forces, and finally, the validity of the proposed approach and desired pile interaction factors may be obtained. Results confirm the portray the influence of the governing parameters on the pile interaction.展开更多
Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silic...Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.展开更多
A rigorous analytical method is presented, which takes into account the pile stiffening effects, using the theory of the transfer matrix-bottom rigidity for calculating the interaction factor between two identical pil...A rigorous analytical method is presented, which takes into account the pile stiffening effects, using the theory of the transfer matrix-bottom rigidity for calculating the interaction factor between two identical piles in multi-layered soils subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decomposed into extended soil layers and two fictitious piles characterized respectively by Young's moduli of the layered soils and those of the differences between the piles and the layered soils. The unknown axial forces along fictitious piles are determined by solving a Fredholm integral equation of the second kind, which imposes the compatibility condition that the axial strains of the fictitious piles are equal to those corresponding to the centroidal axes of the extended layered soils. The real pile displacements can be calculated based on the determined fictitious pile forces, and finally, the desired pile interaction factors may be obtained. Selected results from parametrical studies are presented to confirm the validity of the proposed approach and portray the influence of the governing parameters on the pile interaction.展开更多
The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (...The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).展开更多
基金This work is supported by the National Natural Science Foundation of China (No.21473171 and No.21573208), the Pundamental Research Funds for the Central Universities (No.JB160508), and the Huashan Mountain Scholar Program.
文摘Molecular self-assembly is extremely important in many fields, but the characterization of their corresponding intermolecular interactions is still lacking. The C-H stretching Raman band can reflect the hydrophobic interactions during the self-assembly process of sodium dodecyl sulfate (SDS) in aqueous solutions. However, the Raman spectra in this region are seriously overlapped by the OH stretching band of water. In this work, vertically polarized Raman spectra were used to improve the detection sensitivity of spectra of C-H region for the first time. The spectral results showed that the first critical micelle concentration and the second critical micelle concentration of SDS in water were 8.5 and 69 mmol/L, respectively, which were consistent with the results given by surface tension measurements. Because of the high sensitivity of vertically polarized Raman spectra, the critical micelle concentration of SDS in a relatively high concentration of salt solution could be obtained in our experiment. The two critical concentrations of SDS in 100 mmol/L NaCl solution were recorded to be 1.8 and 16.5 mmol/L, respectively. Through comparing the spectra and surface tension of SDS in water and in NaCl solution, the self-assembly process in bulk phase and at interface were discussed. The interactions among salt ions, SDS and water molecules were also analyzed. These results demonstrated the vertically polarized Raman spectra could be employed to study the self-assembly process of SDS in water.
基金supported by the Tianjin Research Program of Application Foundation Advanced Technology (14JCYBJC21900)the National Natural Science Foundation of China under grants 51278327
文摘The scattering of plane harmonic P and SV waves by a pair of vertically overlapping lined tunnels buried in an elastic half space is solved using a semi-analytic indirect boundary integration equation method. Then the effect of the distance between the two tunnels, the stiffness and density of the lining material, and the incident frequency on the seismic response of the tunnels is investigated. Numerical results demonstrate that the dynamic interaction between the twin tunnels cannot be ignored and the lower tunnel has a significant shielding effect on the upper tunnel for high-frequency incident waves, resulting in great decrease of the dynamic hoop stress in the upper tunnel; for the low-frequency incident waves, in contrast, the lower tunnel can lead to amplification effect on the upper tunnel. It also reveals that the frequency-spectrum characteristics of dynamic stress of the lower tunnel are significantly different from those of the upper tunnel. In addition, for incident P waves in low-frequency region, the soft lining tunnels have significant amplification effect on the surface displacement amplitude, which is slightly larger than that of the corresponding single tunnel.
基金This work is supported financially by the National Key R&D Program of China[2018YFC1406000,2016YFE0202700]Supported by the National Natural Science Foundation of China(NSFC)[Grant Nos.51809061,51639004]+1 种基金Supported by the Natural Science Foundation of Heilongjiang Province of China[LC2018021]Supported by the Fundamental Research Funds for the Central Universities[HEUCFM180111].
文摘In the ice-covered oceanic region,the collision between sea ice and offshore structures will occur,causing the crushing failure of ice and the vibration of structures.The vibration can result in fatigue damage of structure and even endanger the crews’health.It is no doubt that this ice-structure interaction has been noted with great interest by the academic community for a long time and numerous studies have been done through theoretical analysis,experimental statistics and numerical simulation.In this paper,the bond-based Peridynamics method is applied to simulate the interaction between sea ice and wide vertical structures,where sea ice is modeled as elastic-plastic material,with a certain yield condition and failure criterion.Oscillation equation of single-degree-of-freedom is considered to investigate the vibration features of the structure during the interaction process.The damage of ice,ice forces and vibration responses of structure in the duration are obtained through numerical simulation.A parametric investigation is undertaken to identify the key parameters,such as ice thickness,the diameter of structure and relative velocity that trigger the ice crushing,ice forces and vibration responses of the structure.Results indicate that all three parameters have a positive correlation with the overall level of ice force and vibration displacement.Besides,a velocity coefficient is proposed to predict the vibration displacement based on its relation with ice speed.
基金This paper presents one portion ofthe achievement in the China National Key Project"Construction Techniqties for Breakwaters in Deep Water"(96-415-02-03)
文摘The characteristics of wave forces are studied based on physical model tests with regular waves. The ratio of obliquely incident wave forces to normally incident wave forces on unit length of a vertical wall is related with various factors. A linear reduction of the mean force of obliquely incident waves is confirmed with an increase in the relative caisson length. Also the characteristics of reflection coefficient of diagonal waves are discussed.
基金National Key Basic Research Development Program“973”(2013CB430103)State Key Laboratory of Severe Weather,Chinese Academy Meteorological Sciences(2015LASW-A07)Project Supported by the Jiangsu Province Ordinary University Graduate Student Scientific Research and Innovation Program(CXZZ12_0495)
文摘Three typhoons, Goni, Morakot and Etau which were generated in Western Pacific in 2009, are successfully simulated by the WRF model. The horizontal and vertical vorticity and their interaction are analyzed and diagnosed by using the simulation results. It is shown that their resultant vectors had a fixed pattern in the evolution process of the three typhoons: The horizontal vorticity converged to the tropical cyclone(TC) center below 900 h Pa level, flowed out from it at around 900 to 800 h Pa, and flowed in between 800 h Pa and 700 h Pa. If multiple maximum wind speed centers showed up, the horizontal vorticity converged to the center of the typhoon below the maximum wind speed center and diverged from the TC center above the maximum wind speed center. At low levels, the three typhoons interacted with each other through vertical circulation generated by the vortex tube. This circulation was mainly generated by the eastward or westward horizontal vorticity vectors. Clouds and precipitation were generated on the ascending branch of the vertical circulation. The vortex tubes often flowed toward the southwest of the right TC from the northeast of the left TC. According to the full vorticity equation, the horizontal vorticity converted into the vertical vorticity near the maximum wind speed center below 850 h Pa level, and the period of most intense conversion was consistent with the intensification period of TC, while the vorticity advection was against the intensification. The vertical vorticity converted into the horizontal vorticity from 800 h Pa to 600 h Pa, and the wind speed decreased above the maximum wind speed region at low levels.
基金supported by the National Natural Science Foundation of China(No.10572155 and 10732100)Guangdong Science and Technology Bureau(No.2006A11001002)
文摘The vertical and lateral interactions in a multisheet array of InAs/GaAs quantum dots are analyzed by finite element method (FEM). It is shown that due to the effects of vertical interaction, nucleation prefers to happen above buried quantum dots (QDs). Meanwhile, the effects of lateral interaction adjust the spacing of lateral neighboring QDs. The vertical coupling becomes strong with deceasing GaAs spacer height and increasing number of buried layers, while the lateral coupling becomes strong with increasing InAs wetting layer thickness. The phenomenon that, after successive layers, the spacing and size of QDs islands become progressively more uniform is explained according to the minimum potential energy theory.
基金supported by the National Natural Science Foundation of China (Grant No.50779045)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering (Grant No.0710)+2 种基金the Na-tional Science Foundationfor Post-doctoral Scientists of China (Grant No.20080440681)the Natural Science Foun-dation of Tianjin,China (Grant No.10JCYBJC03700)the Scientific and Technologic Development Foundation of the Higher Education Institutions of Tianjin,China (Grant No.20080906)
文摘A numerical wave flume is constructed based on the Reynolds Averaged Navier-Stokes (RANS) equations with turbulence closure by a modified k - ε model to study the viscous interactiorrs of waves with vertical breakwaters for different overtopping cases. The goveruing equations, the turbulence model, boundary conditions, and solution method for the nu- merical wave flume are introduced briefly. The reliability of the numerical wave flume is examined by comparing the nu- merical results with the experimental measurements, and good agreements between them indicate the validity of the pre- sent model. The developments of mean velocity fields, the contours of vorticity, and the influences of wave nonlinearity on turbulence field as wave passing through vertical breakwaters are discussed in detail based on the numerical results. It is noted that the vortices at the rear of the lower submerged breakwater are close to the bottum and maytbe induce the scouring to the leeside toe of marine structure in practice. Over all, a conclusion can be obtained from this study that the turbulence in wave field around structure is induced directly by the development of boundary layer on the solid boundary, the nonlinear interaction of free surface with obstaele, and the plunging of overtopping waves.
基金Foundation item: Projects(50708093, 50808159) supported by the National Natural Science Foundation of China
文摘In order to improve the reliability of the design and calculation of single piles under the combined vertical and lateral loads, the solutions were presented based on the subgrade reaction method, in which the ultimate soil resistance was considered and the coefficient of subgrade reaction was assumed to be a constant. The corresponding computational program was developed using FORTRAN language. A comparison between the obtained solutions and the model test results was made to show the validity of the obtained solutions. The calculation results indicate that both the maximum lateral displacement and bending moment increase with the increase of the vertical and lateral loads and the pile length above ground, while decrease as the pile stiffness, the coefficient of subgrade reaction and the yielding displacement of soil increase. It is also shown that the pile head condition controls the pile responses and the vertical load may cause the instability problem to the pile. In general, the proposed method can be employed to calculate the pile responses independent of the magnitude of the pile deflection.
基金Project supported by the National Natural Science Foundation of China (No. 10872124)
文摘Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibration of an end-bearing pile in a saturated viscoelastic soil layer is investigated in the frequency domain using the Helmholtz decomposition and variable separation method. The axisymmetrical analytical solutions for vertical vibrations of the pile in a saturated viscoelastic soil layer are obtained, and the analytical expression of the dynamical complex stiffness of the pile top is presented. Responses of dynamic stiffness factor and equivalent damping of pile top with respect to the frequency are shown in figures using a numerical method. Effects of the saturated soil parameters, modulus ratio of the pile to soil, slenderness ratio of pile and pile's Poisson ratio, etc. on the stiffness factor and damping are examined. It is shown that, due to the effect of the transversal deformation of the pile and the radial force of the saturated viscoelastic soil acting on the pile, the dynamic stiffness factor and the damping derived from the axisymmetrical solution are greatly different from those derived from the classical Euler-Bernoulli rod model, especially at some specific excitation frequencies. Therefore, there are limitations on applicability of the Euler-Bernoulli rod model in analyzing verticai vibration of the pile. More accurate analysis should be based on a three-dimensional model.
基金The National Natural Science Foundation of China(No.50478022)
文摘A rigorous analytical method is presented for calculating the interaction factor between two identical piles subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decomposed into an extended soil mass and two fictitious piles characterized respectively by Young's modulus of the soil and that of the difference between the pile and soil. The unknown axial forces along fictitious piles are determined by solving a Fredholm integral equation of the second kind, which imposes the compatibility condition that the axial strains of the fictitious piles are equal to those corresponding to the centroidal axes of the extended soil. The real pile forces and displacements can subequally be calculated based on the determined fictitious pile forces, and finally, the validity of the proposed approach and desired pile interaction factors may be obtained. Results confirm the portray the influence of the governing parameters on the pile interaction.
基金supported by the Fundamental Research Funds for the Central Universities(DUT21LK34)Natural Science Foundation of Liaoning Province(2020-MS-113).
文摘Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.
基金National Natural Science Foundation of China(No.50478022)Research and Innovation Project of Shanghai Education Committee,China(No.10YZ208)Excellent Young Teacher Project of Shanghai Education Committee,China(No.dsd08005)
文摘A rigorous analytical method is presented, which takes into account the pile stiffening effects, using the theory of the transfer matrix-bottom rigidity for calculating the interaction factor between two identical piles in multi-layered soils subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decomposed into extended soil layers and two fictitious piles characterized respectively by Young's moduli of the layered soils and those of the differences between the piles and the layered soils. The unknown axial forces along fictitious piles are determined by solving a Fredholm integral equation of the second kind, which imposes the compatibility condition that the axial strains of the fictitious piles are equal to those corresponding to the centroidal axes of the extended layered soils. The real pile displacements can be calculated based on the determined fictitious pile forces, and finally, the desired pile interaction factors may be obtained. Selected results from parametrical studies are presented to confirm the validity of the proposed approach and portray the influence of the governing parameters on the pile interaction.
基金supported by the National Natural Science Foundation of China (Nos. 51209060 and 51106034)the ‘111’ Project Foundation from Ministry of Education and State Administration of Foreign Experts Affairs (No. B07019), Chinathe National Special Foundation for Ocean Energy (No. GHME2010CY01)
文摘The objective of this study was to develop, as well as validate the strongly coupled method (two-way fluid structural interaction (FSI)) used to simulate the transient FSI response of the vertical axis tidal turbine (VATT) rotor, subjected to spatially varying inflow. Moreover, this study examined strategies on improving techniques used for mesh deformation that account for large displacement or deformation calculations. The blade's deformation for each new time step is considered in transient two-way FSI analysis, to make the design more reliable. Usually this is not considered in routine one-way FSI simulations. A rotor with four blades and 4-m diameter was modeled and numerically analyzed. We observed that two-way FSI, utilizing the strongly coupled method, was impossible for a complex model; and thereby using ANSYS-CFX and ANSYS-MECHANICAL in work bench, as given in ANSYS-WORKBENCH, helped case examples 22 and 23, by giving an error when the solution was run. To make the method possible and reduce the computational power, a novel technique was used to transfer the file in ANSYS-APDL to obtain the solution and results. Consequently, the results indicating a two-way transient FSI analysis is a time- and resource-consuming job, but with our proposed technique we can reduce the computational time. The ANSYS STRUCTURAL results also uncover that stresses and deformations have higher values for two-way FSI as compared to one-way FSI. Similarly, fluid flow CFX results for two-way FSI are closer to experimental results as compared to one-way simulation results. Additionally, this study shows that, using the proposed method we can perform coupled simulation with simple multi-node PCs (core i5).