Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-...The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.展开更多
The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature cont...The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.展开更多
A profilometer used for 3 dimension measurement of micro-surface topography is presented. The instrument is based on the vertical scanning microscopic interferometry (VSMI). A Linnik type interference microscope is ...A profilometer used for 3 dimension measurement of micro-surface topography is presented. The instrument is based on the vertical scanning microscopic interferometry (VSMI). A Linnik type interference microscope is used and the interferograms which present changes of surface profile are recorded with a CCD camera. A developed nano-positioning work stage with an integrated optical grating displacement measuring system realizes the precise vertical scanning motion during profile measurement. By a white-light phase shifting algorithm of arbitrary step, frames of interferograms are processed by a computer to rebuild and evaluate the measured profile. Because of the specialty of VSMI, the profilometer is suitable for both smooth and rough surface measurement. It can also be used to measure curved surfaces, dimension of micro electro mechanical systems (MEMS), etc. The vertical resolution of the profilometer is 0.5 nm, and lateral resolution 0.5 μm.展开更多
The analytical solutions of the PBL wind distribution under the equilibrium of four forces including both horizontal and vertical advections are obtained in this paper using small parameter method. Utilizing this simp...The analytical solutions of the PBL wind distribution under the equilibrium of four forces including both horizontal and vertical advections are obtained in this paper using small parameter method. Utilizing this simple PBL model, we also compute the wind spirals of a certain circular vortex over level ground and over a west-east ranged mountain, respectively. The results show that when there exsits large-scale orographic forcing,vertical advection may exert considerable influence on the wind distribution of PBL, the angle between geostrophic flow and surface wind, and the height of the top of PBL.展开更多
In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surem...In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.展开更多
Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA...Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA have been detected in bottled water samples. The absorption of BPA was measured with HPLC using a vertical cultivation system with Bulbs of the Allium Cepa plant planted in these plastic bottles with monitored growth. Vertical cultivation was found to have a low level of BPA in the plant cells, making it a safe cultivation method under specific climate conditions. The mean concentration of BPA in vertical cultivation is 0.19 ug/ml (3.8 ng for a 20 uL injection), and the Limit of Quantification (LOQ) is 0.63 ug/ml (12.7 ng for 20 uL injection). While Scanning Electron Microscope (SEM) shows that the concentrations are relatively low in water samples stored at room temperature compared to those exposed to direct sunlight (40°C) and water bottle samples stored at (-4°C), The correlation coefficients were found to be good (0.9992). SEM is used for plastic bottle samples stored at different temperatures. The images identify compound decay and explore the morphology of BPA in manufactured plastic materials.展开更多
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t...Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.展开更多
The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,...The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,and the secondary electron emission(SEE)characteristics for the VGN structure are studied.The COMSOL simulation and the scanning electron microscope(SEM)image analysis are carried out to study the secondary electron yield(SEY).The effect of aspect ratio and packing density of VGN on SEY under normal incident condition are studied.The results show that the VGN structure has a good effect on suppressing SEE.展开更多
The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in dif...The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in different orientations and the change in TC nondimensional intensity highly diminish,although slight differences are still present.The subtle differences in the correlations are likely associated with different synoptic-scale patterns at upper and lower levels.This result suggests that,in addition to thermodynamic effects,dynamic roles of the synoptic-scale patterns associated with the VWS should also be taken into account when the authors examine how VWS in different directions affects TC intensity change.展开更多
Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing ...Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing production inspection are necessary to solve the problem of risks, and the inspection must be based on the safety standard. Existing safety standard results from a principle of “maximum permissible concentrations or MPC”. This principle is not applicable to nanoparticles, but a safety standard reflecting risks inherent in nanoparticles doesn’t exist. Essence of the risks is illustrated by the example from pharmacology, since its safety assurance is conceptually based on MPC and it has already come against this problem. Possible formula of safety standard for nanoparticles is reflected in many publications, but conventional inspection methods cannot provide its realization, and this gap is an obstacle to assumption of similar formulas. Therefore the development of nanoparticle industry as a whole (also development of the pharmacology in particular) is impossible without the creation of an adequate inspection method. There are suggested new inspection methods founded on the new physical principle and satisfying to the adequate safety standard for nanoparticles. These methods demonstrate that creation of the adequate safety standard and the outgoing production inspection in a large-scale manufacturing of nanoparticles are the solvable problems. However there is a great distance between the physical principle and its hardware realization, and a transition from the principle to the hardware demands great intellectual and material costs. Therefore it is desirable to call attention of the public at large to the necessity of urgent expansions of investigations associated with outgoing inspections in nanoparticles technologies. It is necessary also to attract attention, first, of representatives of state structures controlling approvals of the adequate safety standard to this problem, since it is impossible to compel producers providing the safety without the similar standard, and, second, of leaders of pharmacological industry, since their industry already entered into the nanotechnology era, and they have taken an interest in a forthcoming development of inspection methods.展开更多
目的:探讨牙根纵裂(vertical root fractures,VRF)发生的牙合因素。方法:应用T-ScanⅢ咬合分析仪对8例VRF患者及个别正常牙合者分别进行正中及侧方咬合记录,定量数据牙合力百分比值(tooth occlusal force percent-ages,T-FP)、双侧牙合...目的:探讨牙根纵裂(vertical root fractures,VRF)发生的牙合因素。方法:应用T-ScanⅢ咬合分析仪对8例VRF患者及个别正常牙合者分别进行正中及侧方咬合记录,定量数据牙合力百分比值(tooth occlusal force percent-ages,T-FP)、双侧牙合力百分比值(two sides force percentages,TS-FP)、牙合力不对称指数(asymmetry index of occlusal force,AOF)、闭合时间(occlusion time,OT)、侧方牙合分离时间(disclusion time,DT)采用配对资料的符号秩和检验分析,定性数据早接触、牙合力中心点(center of force,COF)位置及偏移方向采用Fisher确切概率法检验分析,检验水准α=0.05,P<0.05差异有统计学意义。结果:VRF组T-FP、AOF、OT、DT大于正常对照组,差异具有统计学意义(P<0.05);2组COF位置差异具有统计学意义(P<0.05),TS-FP、早接触发生率、COF偏移方向差异无统计学意义(P>0.05)。结论:VRF患者全口牙合力分布不均衡,双侧牙合力分布不对称,牙合接触稳定性差。展开更多
Although the popular database systems perform well on query optimization,they still face poor query execution plans when the join operations across multiple tables are complex.Bad execution planning usually results in...Although the popular database systems perform well on query optimization,they still face poor query execution plans when the join operations across multiple tables are complex.Bad execution planning usually results in bad cardinality estimations.The cardinality estimation models in traditional databases cannot provide high-quality estimation,because they are not capable of capturing the correlation between multiple tables in an effective fashion.Recently,the state-of-the-art learning-based cardinality estimation is estimated to work better than the traditional empirical methods.Basically,they used deep neural networks to compute the relationships and correlations of tables.In this paper,we propose a vertical scanning convolutional neural network(abbreviated as VSCNN)to capture the relationships between words in the word vector in order to generate a feature map.The proposed learning-based cardinality estimator converts Structured Query Language(SQL)queries from a sentence to a word vector and we encode table names in the one-hot encoding method and the samples into bitmaps,separately,and then merge them to obtain enough semantic information from data samples.In particular,the feature map obtained by VSCNN contains semantic information including tables,joins,and predicates about SQL queries.Importantly,in order to improve the accuracy of cardinality estimation,we propose the negative sampling method for training the word vector by gradient descent from the base table and compress it into a bitmap.Extensive experiments are conducted and the results show that the estimation quality of q-error of the proposed vertical scanning convolutional neural network based model is reduced by at least 14.6%when compared with the estimators in traditional databases.展开更多
Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical vi...Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.展开更多
Two kinds of TiO<sub>2</sub> filled epoxy coatings were designed and prepared to obtain pigments with different dispersion degrees of TiO<sub>2</sub> particles.Laser scanning confocal microscop...Two kinds of TiO<sub>2</sub> filled epoxy coatings were designed and prepared to obtain pigments with different dispersion degrees of TiO<sub>2</sub> particles.Laser scanning confocal microscope(LSCM)was used to investigate both the horizontal and vertical distributions of TiO<sub>2</sub> particles in the coatings.The results indicated that TiO<sub>2</sub> in the two samples shared considerable similarity in horizental dispersion,but exhibited great difference in vertical dispersion.TiO<sub>2</sub> showed uniform vertical distribution in disp coating,wheras a gap about 1.1μm was found in the non-disp coating,which significantly influenced the surface optical properties of the coatings during weathering.Based on the confocal data,the model of dispersion of pigments in the coatings was proposed and the change of surface properties during weathering was predicted:the surface optical properties showed an initial decrease followed by a subsequent increase,which was in good agreement with the weathering data.展开更多
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
基金supported by the State Key Basic Research Development Program (2004CB418300 and 2009CB421504)the National Natural Science Foundation of China under Grant Nos.40633016 and 40830958
文摘The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.
基金Project(61174132)supported by the National Natural Science Foundation of ChinaProject(2015zzts047)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20130162110067)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The temperature control of the large-scale vertical quench furnace is very difficult due to its huge volume and complex thermal exchanges. To meet the technical requirement of the quenching process, a temperature control system which integrates temperature calibration and temperature uniformity control is developed for the thermal treatment of aluminum alloy workpieces in the large-scale vertical quench furnace. To obtain the aluminum alloy workpiece temperature, an air heat transfer model is newly established to describe the temperature gradient distribution so that the immeasurable workpiece temperature can be calibrated from the available thermocouple temperature. To satisfy the uniformity control of the furnace temperature, a second order partial differential equation(PDE) is derived to describe the thermal dynamics inside the vertical quench furnace. Based on the PDE, a decoupling matrix is constructed to solve the coupling issue and decouple the heating process into multiple independent heating subsystems. Then, using the expert control rule to find a compromise of temperature rising time and overshoot during the quenching process. The developed temperature control system has been successfully applied to a 31 m large-scale vertical quench furnace, and the industrial running results show the significant improvement of the temperature uniformity, lower overshoot and shortened processing time.
基金Project supported by the National Natural Science Foundation of China (Grant No.50175037)
文摘A profilometer used for 3 dimension measurement of micro-surface topography is presented. The instrument is based on the vertical scanning microscopic interferometry (VSMI). A Linnik type interference microscope is used and the interferograms which present changes of surface profile are recorded with a CCD camera. A developed nano-positioning work stage with an integrated optical grating displacement measuring system realizes the precise vertical scanning motion during profile measurement. By a white-light phase shifting algorithm of arbitrary step, frames of interferograms are processed by a computer to rebuild and evaluate the measured profile. Because of the specialty of VSMI, the profilometer is suitable for both smooth and rough surface measurement. It can also be used to measure curved surfaces, dimension of micro electro mechanical systems (MEMS), etc. The vertical resolution of the profilometer is 0.5 nm, and lateral resolution 0.5 μm.
文摘The analytical solutions of the PBL wind distribution under the equilibrium of four forces including both horizontal and vertical advections are obtained in this paper using small parameter method. Utilizing this simple PBL model, we also compute the wind spirals of a certain circular vortex over level ground and over a west-east ranged mountain, respectively. The results show that when there exsits large-scale orographic forcing,vertical advection may exert considerable influence on the wind distribution of PBL, the angle between geostrophic flow and surface wind, and the height of the top of PBL.
文摘In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.
文摘Polycarbonate plastics containing bisphenol A (BPA) used to manufacture drinking water bottles. Kurdistan region in northern Iraq is a developed area with increased pollution from plastic bottles. Trace amounts of BPA have been detected in bottled water samples. The absorption of BPA was measured with HPLC using a vertical cultivation system with Bulbs of the Allium Cepa plant planted in these plastic bottles with monitored growth. Vertical cultivation was found to have a low level of BPA in the plant cells, making it a safe cultivation method under specific climate conditions. The mean concentration of BPA in vertical cultivation is 0.19 ug/ml (3.8 ng for a 20 uL injection), and the Limit of Quantification (LOQ) is 0.63 ug/ml (12.7 ng for 20 uL injection). While Scanning Electron Microscope (SEM) shows that the concentrations are relatively low in water samples stored at room temperature compared to those exposed to direct sunlight (40°C) and water bottle samples stored at (-4°C), The correlation coefficients were found to be good (0.9992). SEM is used for plastic bottle samples stored at different temperatures. The images identify compound decay and explore the morphology of BPA in manufactured plastic materials.
基金The work described in this paper was jointly supported by the National Natural Science Foundation of China (51478360, 51323013, and 50978204).
文摘Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.11975163)。
文摘The secondary electron emission yields of materials depend on the geometries of their surface structures.In this paper,a method of depositing vertical graphene nanosheet(VGN)on the surface of the material is proposed,and the secondary electron emission(SEE)characteristics for the VGN structure are studied.The COMSOL simulation and the scanning electron microscope(SEM)image analysis are carried out to study the secondary electron yield(SEY).The effect of aspect ratio and packing density of VGN on SEY under normal incident condition are studied.The results show that the VGN structure has a good effect on suppressing SEE.
基金This work was jointly supported by the National Key Research and Development Program of China[grant numbers 2018YFC1507103 and 2017YFC1501601]the Key Program of the Ministry of Science and Technology of China[grant number 2017YFE0107700]National Natural Science Foundation of China[grant numbers 41875054,41730961,41730960,and 41775065].
文摘The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in different orientations and the change in TC nondimensional intensity highly diminish,although slight differences are still present.The subtle differences in the correlations are likely associated with different synoptic-scale patterns at upper and lower levels.This result suggests that,in addition to thermodynamic effects,dynamic roles of the synoptic-scale patterns associated with the VWS should also be taken into account when the authors examine how VWS in different directions affects TC intensity change.
文摘Nanoparticles provide great advantages but also great risks. Risks associating with nanoparticles are the problem of all technologies, but they increase in many times in nanotechnologies. Adequate methods of outgoing production inspection are necessary to solve the problem of risks, and the inspection must be based on the safety standard. Existing safety standard results from a principle of “maximum permissible concentrations or MPC”. This principle is not applicable to nanoparticles, but a safety standard reflecting risks inherent in nanoparticles doesn’t exist. Essence of the risks is illustrated by the example from pharmacology, since its safety assurance is conceptually based on MPC and it has already come against this problem. Possible formula of safety standard for nanoparticles is reflected in many publications, but conventional inspection methods cannot provide its realization, and this gap is an obstacle to assumption of similar formulas. Therefore the development of nanoparticle industry as a whole (also development of the pharmacology in particular) is impossible without the creation of an adequate inspection method. There are suggested new inspection methods founded on the new physical principle and satisfying to the adequate safety standard for nanoparticles. These methods demonstrate that creation of the adequate safety standard and the outgoing production inspection in a large-scale manufacturing of nanoparticles are the solvable problems. However there is a great distance between the physical principle and its hardware realization, and a transition from the principle to the hardware demands great intellectual and material costs. Therefore it is desirable to call attention of the public at large to the necessity of urgent expansions of investigations associated with outgoing inspections in nanoparticles technologies. It is necessary also to attract attention, first, of representatives of state structures controlling approvals of the adequate safety standard to this problem, since it is impossible to compel producers providing the safety without the similar standard, and, second, of leaders of pharmacological industry, since their industry already entered into the nanotechnology era, and they have taken an interest in a forthcoming development of inspection methods.
文摘目的:探讨牙根纵裂(vertical root fractures,VRF)发生的牙合因素。方法:应用T-ScanⅢ咬合分析仪对8例VRF患者及个别正常牙合者分别进行正中及侧方咬合记录,定量数据牙合力百分比值(tooth occlusal force percent-ages,T-FP)、双侧牙合力百分比值(two sides force percentages,TS-FP)、牙合力不对称指数(asymmetry index of occlusal force,AOF)、闭合时间(occlusion time,OT)、侧方牙合分离时间(disclusion time,DT)采用配对资料的符号秩和检验分析,定性数据早接触、牙合力中心点(center of force,COF)位置及偏移方向采用Fisher确切概率法检验分析,检验水准α=0.05,P<0.05差异有统计学意义。结果:VRF组T-FP、AOF、OT、DT大于正常对照组,差异具有统计学意义(P<0.05);2组COF位置差异具有统计学意义(P<0.05),TS-FP、早接触发生率、COF偏移方向差异无统计学意义(P>0.05)。结论:VRF患者全口牙合力分布不均衡,双侧牙合力分布不对称,牙合接触稳定性差。
基金the CCF-Huawei Database System Innovation Research Plan under Grant No.CCF-HuaweiDBIR2020004Athe National Natural Science Foundation of China under Grant Nos.61772091,61802035,61962006 and 61962038+1 种基金the Sichuan Science and Technology Program under Grant Nos.2021JDJQ0021 and 2020YJ0481the Digital Media Art,Key Laboratory of Sichuan Province,Sichuan Conservatory of Music,Chengdu,China under Grant No.21DMAKL02.
文摘Although the popular database systems perform well on query optimization,they still face poor query execution plans when the join operations across multiple tables are complex.Bad execution planning usually results in bad cardinality estimations.The cardinality estimation models in traditional databases cannot provide high-quality estimation,because they are not capable of capturing the correlation between multiple tables in an effective fashion.Recently,the state-of-the-art learning-based cardinality estimation is estimated to work better than the traditional empirical methods.Basically,they used deep neural networks to compute the relationships and correlations of tables.In this paper,we propose a vertical scanning convolutional neural network(abbreviated as VSCNN)to capture the relationships between words in the word vector in order to generate a feature map.The proposed learning-based cardinality estimator converts Structured Query Language(SQL)queries from a sentence to a word vector and we encode table names in the one-hot encoding method and the samples into bitmaps,separately,and then merge them to obtain enough semantic information from data samples.In particular,the feature map obtained by VSCNN contains semantic information including tables,joins,and predicates about SQL queries.Importantly,in order to improve the accuracy of cardinality estimation,we propose the negative sampling method for training the word vector by gradient descent from the base table and compress it into a bitmap.Extensive experiments are conducted and the results show that the estimation quality of q-error of the proposed vertical scanning convolutional neural network based model is reduced by at least 14.6%when compared with the estimators in traditional databases.
基金partly supported by the JSPS Grant-in-Aid for Scientific Research #17300032
文摘Full-parallax light-field is captured by a small-scale 3D image scanning system and applied to holographic display. A vertical camera array is scanned horizontally to capture full-parallax imagery, and the vertical views between cameras are interpolated by depth image-based rendering technique. An improved technique for depth estimation reduces the estimation error and high-density light-field is obtained. The captured data is employed for the calculation of computer hologram using ray-sampling plane. This technique enables high-resolution display even in deep 3D scene although a hologram is calculated from ray information, and thus it makes use of the important advantage of holographic 3D display.
基金supported by the National Natural Science Foundation of China(Grant Nos.20944004,50943026)the Open Research Program of the Key Laboratory of Rubber-Plastic(QUST),the Ministry of Education of China(Grant No.0805021)the PhD Research Program of QUST(Grant No.0022200)
文摘Two kinds of TiO<sub>2</sub> filled epoxy coatings were designed and prepared to obtain pigments with different dispersion degrees of TiO<sub>2</sub> particles.Laser scanning confocal microscope(LSCM)was used to investigate both the horizontal and vertical distributions of TiO<sub>2</sub> particles in the coatings.The results indicated that TiO<sub>2</sub> in the two samples shared considerable similarity in horizental dispersion,but exhibited great difference in vertical dispersion.TiO<sub>2</sub> showed uniform vertical distribution in disp coating,wheras a gap about 1.1μm was found in the non-disp coating,which significantly influenced the surface optical properties of the coatings during weathering.Based on the confocal data,the model of dispersion of pigments in the coatings was proposed and the change of surface properties during weathering was predicted:the surface optical properties showed an initial decrease followed by a subsequent increase,which was in good agreement with the weathering data.