Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i...Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.展开更多
To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,et...To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,ethane,methane etc.)undergo fractional condensation phenomenon due to their different boiling points.This means that when one component condenses,others play a role of non-condensable gas(NCG).In order to reveal the influence mechanism of NCG on this condensation process,a numerical method was employed in this paper to study the condensation characteristics of three non-azeotropic binary hydrocarbon vapor mixtures,namely the propane/methane(80%–95%),ethane/methane(65%–85%)and methane/nitrogen(2%–13%)mixtures,on a vertical plate.The model was proposed based on the diffusion layer model,and the finite volume method was used to solve the governing equations.A user defined function was developed by cell iterative method to obtain the source terms in the condensation process.The numerical results show that the gas phase boundary layer formed by the NCG becomes the main resistance to the reduction of heat transfer coefficient.And for the above three mixtures,there is a negative correlation between the NCG concentration and the heat transfer coefficient.Meanwhile,the results show a good agreement with the experimental data,meaning that the proposed model is reliable.Three mixtures within same non-condensable mole fraction of 20%were also investigated,indicating that the mixtures with a higher binary hydrocarbon molecular ratio have a lower heat transfer coefficient.As a result,the presence of the lighter NCG contributes to a thicker boundary layer.展开更多
基金financially supported by the China Petroleum&Chemical Corporation(SINOPEC)(Grant No.P18047-2)the National Natural Science Foundation of China(Grant No.U19B6003-01)the National Key Research and Development Program of China(Grant No.2017YFC0601405)。
文摘Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments.
基金financial support from the National Natural Science Foundation of China(No.51576115)the Shandong Provincial Natural Science Foundation of China(No.ZR2018BEE026)+1 种基金the China Postdoctoral Science Foundation(No.2018M642655)the Fundamental Research Funds of Shandong University of China(No.2017GN0026)。
文摘To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,ethane,methane etc.)undergo fractional condensation phenomenon due to their different boiling points.This means that when one component condenses,others play a role of non-condensable gas(NCG).In order to reveal the influence mechanism of NCG on this condensation process,a numerical method was employed in this paper to study the condensation characteristics of three non-azeotropic binary hydrocarbon vapor mixtures,namely the propane/methane(80%–95%),ethane/methane(65%–85%)and methane/nitrogen(2%–13%)mixtures,on a vertical plate.The model was proposed based on the diffusion layer model,and the finite volume method was used to solve the governing equations.A user defined function was developed by cell iterative method to obtain the source terms in the condensation process.The numerical results show that the gas phase boundary layer formed by the NCG becomes the main resistance to the reduction of heat transfer coefficient.And for the above three mixtures,there is a negative correlation between the NCG concentration and the heat transfer coefficient.Meanwhile,the results show a good agreement with the experimental data,meaning that the proposed model is reliable.Three mixtures within same non-condensable mole fraction of 20%were also investigated,indicating that the mixtures with a higher binary hydrocarbon molecular ratio have a lower heat transfer coefficient.As a result,the presence of the lighter NCG contributes to a thicker boundary layer.
文摘选取典型表层岩溶泉域内的土壤剖面为研究对象,分析土壤样品的主要理化指标,并采用气相色谱-质谱联用仪对土壤中的多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)进行定量分析,研究16种PAHs在土壤剖面中的垂直迁移规律及控制因素。结果表明,所研究的5个土壤剖面中,16种PAHs均被检测出,其多环芳烃含量范围为161~3 285 ng g-1,平均值为987 ng g-1。兰花沟泉域水稻田和水房泉泉域土壤剖面中,PAHs的组成均以低环PAHs为主,后沟泉泉域土壤剖面中以高环PAHs为主,柏树湾泉域马尾松林地和兰花沟泉域马尾松林地土壤剖面中,0~2 cm表层土壤中以高环PAHs为主,2 cm以下土层中以低环PAHs为主。从剖面PAHs含量和组成变化可以判断,低环PAHs较易迁移,但在土层较薄的后沟泉泉域土壤剖面中,由于翻耕等人为的扰动,高环PAHs也较易迁移。5个剖面中,PAHs在水房泉泉域土壤剖面的迁移能力最强。由于岩溶区较薄的土壤层,使得PAHs较易迁移并污染表层岩溶泉水。对土壤理化性质和PAHs总量进行多元回归分析,表明土壤总有机碳(TOC)是控制后沟泉、兰花沟泉和柏树湾泉泉域土壤中PAHs迁移的主要因子,而在水房泉泉域土壤中,无主要影响因子。