An analysis is performed to study the magnetohydrodynamic flow of an electrically conducting, viscous incompressible fluid past a semi-infinite vertical plate with variable surface temperature under the action of tran...An analysis is performed to study the magnetohydrodynamic flow of an electrically conducting, viscous incompressible fluid past a semi-infinite vertical plate with variable surface temperature under the action of transversely applied magnetic field. The heat due to viscous dissipation and the induced magnetic field are assumed to be negligible. The dimensionless governing equations are unsteady, two-dimensional, coupled and non-linear governing equations. It is found that the magnetic field parameter has a retarding effect on the velocities of air and water.展开更多
A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dis...A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dismantling and reinstallation.An FB composed of twin pontoons and multi-porous vertical plates is proposed to improve the wave attenuation performance.The wave attenuation performance is investigated for different FB structures and vertical plate types under different incident wave heights and periods using 2D wave physical model tests in a wave flume.The results demonstrate that the proposed FB has a better performance than that of the conventional single pontoon-type FB.It reduces the wave transmission due to its enhanced wave reflection and energy loss.The wave transmission coefficient of the proposed FB decreases with an increase in the number of layers and relative draft depth of the vertical plates.However,a further decrease in the wave transmission coefficient is not observed when the number of porous vertical plates is increased from 4 to 5 layers.An equation has been derived to predict the wave transmission of the proposed FB based on the experimental results.展开更多
To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,et...To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,ethane,methane etc.)undergo fractional condensation phenomenon due to their different boiling points.This means that when one component condenses,others play a role of non-condensable gas(NCG).In order to reveal the influence mechanism of NCG on this condensation process,a numerical method was employed in this paper to study the condensation characteristics of three non-azeotropic binary hydrocarbon vapor mixtures,namely the propane/methane(80%–95%),ethane/methane(65%–85%)and methane/nitrogen(2%–13%)mixtures,on a vertical plate.The model was proposed based on the diffusion layer model,and the finite volume method was used to solve the governing equations.A user defined function was developed by cell iterative method to obtain the source terms in the condensation process.The numerical results show that the gas phase boundary layer formed by the NCG becomes the main resistance to the reduction of heat transfer coefficient.And for the above three mixtures,there is a negative correlation between the NCG concentration and the heat transfer coefficient.Meanwhile,the results show a good agreement with the experimental data,meaning that the proposed model is reliable.Three mixtures within same non-condensable mole fraction of 20%were also investigated,indicating that the mixtures with a higher binary hydrocarbon molecular ratio have a lower heat transfer coefficient.As a result,the presence of the lighter NCG contributes to a thicker boundary layer.展开更多
This paper compacts with an exact analysis of radiative effects on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over a vertical plate. The non-dimension...This paper compacts with an exact analysis of radiative effects on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over a vertical plate. The non-dimensional continuity, momentum, and energy equations are solved using appropriate transformation. The dimensionless momentum and energy equations are solved numerically through an explicit finite difference method. The stability and convergence analysis also discussed. Finally, outcomes of the parameters on velocity and temperature profiles are displayed graphically and qualitatively.展开更多
In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection...In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection in the incompressible laminar boundary layer flow and heat conduction in a solid wall for the flow passing a flat plate fin. A combination of flat-plate flow and flat-plate fin heat conduction has been considered in the present study.Finite -difference solutions for the interface temperature profiles and the heat transfer rates have been presented over the entire thermo-fluid-dynamic field for Prandtl numbers from 0.001 to 10000.First,the similar flow field has been solved by the Runge-Kutta method and the shooting methods,then the correlation equation of the local heat transfer coefficient have been obtained.Finally,the empirical formula has been substituted into the fin temperature heat conduction calculation processes to obtain the iterative solutions of the conjugate problems.展开更多
The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid a...The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.展开更多
The objective of the present study is to investigate the effect of flow parameters on the free convection and mass transfer of an unsteady magnetohydrodynamic flow of an electrically conducting, viscous, and incompres...The objective of the present study is to investigate the effect of flow parameters on the free convection and mass transfer of an unsteady magnetohydrodynamic flow of an electrically conducting, viscous, and incompressible fluid past an infinite vertical porous plate under oscillatory suction velocity and thermal radiation. The Dufour (diffusion thermo) and Soret (thermal diffusion) effects are taken into account. The problem is solved numerically using the finite element method for the velocity, the temperature, and the concentration field. The expression for the skin friction, the rate of heat and mass transfer is obtained. The results are presented numerically through graphs and tables for the externally cooled plate (Gr 〉 0) and the externally heated plate (Gr 〈 0) to observe the effects of various parameters encountered in the equations.展开更多
A mathematical analysis has been carried out to investigate the effect of internal heat generation/absorption on steady two-dimensional radiative magnetohydrodynamics(MHD)boundary-layer flow of a viscous,incompressibl...A mathematical analysis has been carried out to investigate the effect of internal heat generation/absorption on steady two-dimensional radiative magnetohydrodynamics(MHD)boundary-layer flow of a viscous,incompressible nanofluid over a vertical plate.A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations and then solved analytically using HAM and numerically by the fourth order Runge–Kutta integration scheme with shooting method.The effects of different controlling parameters on the dimensionless velocity,temperature and nanoparticle volume fraction profiles are discussed graphically.The reduced Nusslet number and the local Sherwood number are tabulated.It is found that the nanosolid volume fraction profile decreases in the presence of heat generation and increases in the case of heat absorption and a reverse trend is observed in velocity profile.An excellent agreement is observed between present analytical and numerical results.Furthermore,comparisons have been made with bench mark solutions for a special case and obtained a very good agreement.展开更多
Thermal losses for a buried vertical thin plate can be expressed as a function of the assigned temperature distribution,the medium conductivity and the geometrical properties that describe the model. When the geometri...Thermal losses for a buried vertical thin plate can be expressed as a function of the assigned temperature distribution,the medium conductivity and the geometrical properties that describe the model. When the geometricalproperties reduce to one, the plate-ground thermal resistance can be expressed regardless of plate dimension, dependingonly on temperature distribution given at surface plate and its temperature difference with medium.展开更多
In this paper oscillatory 2-D natural convection from a vertical isothermal wall embedded in a po- rous medium, and originating from the oscillation of longitudinal fluid flow, has been investigated both analytically ...In this paper oscillatory 2-D natural convection from a vertical isothermal wall embedded in a po- rous medium, and originating from the oscillation of longitudinal fluid flow, has been investigated both analytically and numerically. Two asymptotic solutions, valid for large and small values of dimensionless frequency γ respectively, are obtained in the closed form. In the range where the asymptotic solutions break down, numerical results to the governing equations are obtained by local similarity meth- od. Both numerical and analytical results show that pulsatory components of the flow and heat transfer depend only on the parameter γ, and the effect of longitudinal oscillation is to decrease the magnitude or' pulsatory Nusselt number with a phase lag between 0 and 90 deg. A correlation for pulsatory heat trans- fer rates is proposed in the whole range of γ within 3% accuracy compared with the numerical results.展开更多
Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched...Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched eigenfunction expansion method and a least square approach, the analytical solutions are sought for the established boundary value problem. The effects of the incidence angle, location of step, depth ratio of deep to shallow waters,and column width between two plates, on the reflection coefficients, the horizontal wave forces acting on the two plates, and the mean surface elevation between the two plates, are numerically examined under a variety of wave conditions. The results show that the existence of the stepped bottom between two plates considerably impacts the hydrodynamic performances of the present system. It is found that the effect of stepped bottom on the reflection coefficient of the present two-plate structure is evident only with waves of the low dimensionless frequency.Moreover, the influence of the step location on the hydrodynamic performance of the present two-plate structure is slight if the step is placed in between the two plates.展开更多
A new silicon-on-insulator (SOI) power lateral MOSFET with a dual vertical field plate (VFP) in the oxide trench is proposed. The dual VFP modulates the distribution of the electric field in the drift region, whic...A new silicon-on-insulator (SOI) power lateral MOSFET with a dual vertical field plate (VFP) in the oxide trench is proposed. The dual VFP modulates the distribution of the electric field in the drift region, which enhances the internal field of the drift region and increases the drift doping concentration of the drift region, resulting in remarkable improvements in breakdown voltage (BV) and specific on-resistance (Ron,sp). The mechanism of the VFP is analyzed and the characteristics of BV and Ron,sp are discussed. It is shown that the BV of the proposed device increases from 389 V of the conventional device to 589 V, and the Ron,sp decreases from 366 mΩ·cm2 to 110 mΩ·cm2.展开更多
In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of ...In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.展开更多
Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study o...Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.展开更多
Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analy...Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analysis of the roles of both velocity and temperature gradient at infinity is of key relevance for our results.展开更多
This paper analyzes the wave absorption efficiency of multi-layer perforated plates in an ideal fluid, based on the linear potential flow theory. The influence of the thickness, the porosity and the layout form of the...This paper analyzes the wave absorption efficiency of multi-layer perforated plates in an ideal fluid, based on the linear potential flow theory. The influence of the thickness, the porosity and the layout form of the plates on the wave absorptivity is studied on the assumption that all perforated plates are composed of the same materials and have the same thickness and porosity. The calculation results indicate that the larger the number of layers of the perforated plate set, the better the wave absorption efficiency, however, when the layer number exceeds a certain value, the efficiency of the plates is not significantly increased. For the case of porosity ?= 0.2, thickness b= 0.07 m and 4 layers of perforated plates with a distance l= 1.0 m between the layers, 90% of the energy of the wave within the incident wave period between 1.6 s and 4.4 s can be absorbed.展开更多
We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eol...We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.展开更多
An ultralow specific on-resistance high-k LDMOS with vertical field plate(VFP HK LDMOS) is proposed. The high-k dielectric trench and highly doped interface N+ layer are made in bulk silicon to reduce the surface f...An ultralow specific on-resistance high-k LDMOS with vertical field plate(VFP HK LDMOS) is proposed. The high-k dielectric trench and highly doped interface N+ layer are made in bulk silicon to reduce the surface field of the drift region in the VFP HK LDMOS. The gate vertical field plate(VFP) pinning in the high-k dielectric trench can modulate the bulk electric field. The high-k dielectric not only provides polarized charges to assist depletion of the drift region, so that the drift region and high-k trench maintain charge balance adaptively,but also can fully assist in depleting the drift region to increase the drift doping concentration and reshape the electric field to avoid premature breakdown. Compared with the conventional structure, the VFP HK LDMOS has the breakdown voltage of 629.1 V at the drift length of 40 μm and the specific on-resistance of 38.4 mΩ·cm^2 at the gate potential of 15 V. Then the power figure of merit is 10.31 MW/cm^2.展开更多
This paper investigates the reflection of normal incident waves produced by absorbing-type breakwaters. The absorbing-type breakwaters in this study consist of a vertical porous plate, a submerged permeable caisson, a...This paper investigates the reflection of normal incident waves produced by absorbing-type breakwaters. The absorbing-type breakwaters in this study consist of a vertical porous plate, a submerged permeable caisson, and an impermeable back wall. The flow field is divided into four regions: a porous caisson region, and three pure water regions. Under the assumptions of linear wave theory, Darcy's law in the perforated wall, and the pore velocity potential theory of Sollitt and Cross (1972) in the porons caisson region, this study creates a 2-D BEM model to calculate the reflection coefficients of water waves using several breakwater properties. This numerical model is calibrated by previous numerical studies and limiting cases for a partially perforated-wall caisson breakwater and a vertical porous breakwater with an impermeable back wall. Generally speaking, the wave dissipation in absorbing-type breakwaters is bigger than that for a partially perforatedwall caisson breakwater. The reflection coefficient values imply the performance of wave absorbers in this study. Therefore, we examine the major factors that affect the reflection coefficient.展开更多
文摘An analysis is performed to study the magnetohydrodynamic flow of an electrically conducting, viscous incompressible fluid past a semi-infinite vertical plate with variable surface temperature under the action of transversely applied magnetic field. The heat due to viscous dissipation and the induced magnetic field are assumed to be negligible. The dimensionless governing equations are unsteady, two-dimensional, coupled and non-linear governing equations. It is found that the magnetic field parameter has a retarding effect on the velocities of air and water.
基金This work was financially supported by the National Key R&D Program of China(Grant No.2017YFC1404200).
文摘A floating breakwater(FB)has extensive potential applications in the fields of coastal,offshore,and ocean engineering owing to its advantages such as eco-friendliness,low cost,easy and rapid construction,and quick dismantling and reinstallation.An FB composed of twin pontoons and multi-porous vertical plates is proposed to improve the wave attenuation performance.The wave attenuation performance is investigated for different FB structures and vertical plate types under different incident wave heights and periods using 2D wave physical model tests in a wave flume.The results demonstrate that the proposed FB has a better performance than that of the conventional single pontoon-type FB.It reduces the wave transmission due to its enhanced wave reflection and energy loss.The wave transmission coefficient of the proposed FB decreases with an increase in the number of layers and relative draft depth of the vertical plates.However,a further decrease in the wave transmission coefficient is not observed when the number of porous vertical plates is increased from 4 to 5 layers.An equation has been derived to predict the wave transmission of the proposed FB based on the experimental results.
基金financial support from the National Natural Science Foundation of China(No.51576115)the Shandong Provincial Natural Science Foundation of China(No.ZR2018BEE026)+1 种基金the China Postdoctoral Science Foundation(No.2018M642655)the Fundamental Research Funds of Shandong University of China(No.2017GN0026)。
文摘To improve the transportation efficiency and reduce the supply cost,the liquefaction becomes an important technology to store and transport the natural gas.During the liquefaction,the various components(e.g.propane,ethane,methane etc.)undergo fractional condensation phenomenon due to their different boiling points.This means that when one component condenses,others play a role of non-condensable gas(NCG).In order to reveal the influence mechanism of NCG on this condensation process,a numerical method was employed in this paper to study the condensation characteristics of three non-azeotropic binary hydrocarbon vapor mixtures,namely the propane/methane(80%–95%),ethane/methane(65%–85%)and methane/nitrogen(2%–13%)mixtures,on a vertical plate.The model was proposed based on the diffusion layer model,and the finite volume method was used to solve the governing equations.A user defined function was developed by cell iterative method to obtain the source terms in the condensation process.The numerical results show that the gas phase boundary layer formed by the NCG becomes the main resistance to the reduction of heat transfer coefficient.And for the above three mixtures,there is a negative correlation between the NCG concentration and the heat transfer coefficient.Meanwhile,the results show a good agreement with the experimental data,meaning that the proposed model is reliable.Three mixtures within same non-condensable mole fraction of 20%were also investigated,indicating that the mixtures with a higher binary hydrocarbon molecular ratio have a lower heat transfer coefficient.As a result,the presence of the lighter NCG contributes to a thicker boundary layer.
文摘This paper compacts with an exact analysis of radiative effects on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over a vertical plate. The non-dimensional continuity, momentum, and energy equations are solved using appropriate transformation. The dimensionless momentum and energy equations are solved numerically through an explicit finite difference method. The stability and convergence analysis also discussed. Finally, outcomes of the parameters on velocity and temperature profiles are displayed graphically and qualitatively.
基金National Science Council for the financial support through Grant.NSC 98-2221-E-434-009-
文摘In this study,a new and effective improved Semi-Analytic and Semi-Empirical formula f(Pr)= (0.749999437Pr^(1/2))/((0.609+1.221Pr^(1/2)+1.238Pr)^(1/4))has been proposed to solve a conjugate problem with free convection in the incompressible laminar boundary layer flow and heat conduction in a solid wall for the flow passing a flat plate fin. A combination of flat-plate flow and flat-plate fin heat conduction has been considered in the present study.Finite -difference solutions for the interface temperature profiles and the heat transfer rates have been presented over the entire thermo-fluid-dynamic field for Prandtl numbers from 0.001 to 10000.First,the similar flow field has been solved by the Runge-Kutta method and the shooting methods,then the correlation equation of the local heat transfer coefficient have been obtained.Finally,the empirical formula has been substituted into the fin temperature heat conduction calculation processes to obtain the iterative solutions of the conjugate problems.
文摘The objective of present work is to study the thermo diffusion effect on an unsteady simultaneous convective heat and mass transfer flow of an incompressible, electrically conducting, heat generating/absorbing fluid along a semi-infinite moving porous plate embedded in a porous medium with the presence of pressure gradient, thermal radiation field and chemical reaction. It is assumed that the permeable plate is embedded in a uniform porous medium and moves with a constant velocity in the flow direction in the presence of a transverse magnetic field. It is also assumed that the free stream consists of a mean velocity, temperature and concentration over which are super imposed an exponentially varying with time. The equations of continuity, momentum, energy and diffusion, which govern the flow field, are solved by using a regular perturbation method. The behavior of the velocity, temperature, concentration, Skin-friction, rate of heat transfer and rate of mass transfer has been discussed for variations in the physical parameters. An increase in both Pr and R results a decrease in thermal boundary layer thickness. However, concentration decreases as Kr, Sc increase but it increases with an increase in both So and δ.
文摘The objective of the present study is to investigate the effect of flow parameters on the free convection and mass transfer of an unsteady magnetohydrodynamic flow of an electrically conducting, viscous, and incompressible fluid past an infinite vertical porous plate under oscillatory suction velocity and thermal radiation. The Dufour (diffusion thermo) and Soret (thermal diffusion) effects are taken into account. The problem is solved numerically using the finite element method for the velocity, the temperature, and the concentration field. The expression for the skin friction, the rate of heat and mass transfer is obtained. The results are presented numerically through graphs and tables for the externally cooled plate (Gr 〉 0) and the externally heated plate (Gr 〈 0) to observe the effects of various parameters encountered in the equations.
基金One of the authors(N.Vishnu Ganesh)gratefully acknowledges the financial support of Rajiv Gandhi National Fellowship(RGNF),UGC,New Delhi,India.
文摘A mathematical analysis has been carried out to investigate the effect of internal heat generation/absorption on steady two-dimensional radiative magnetohydrodynamics(MHD)boundary-layer flow of a viscous,incompressible nanofluid over a vertical plate.A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations and then solved analytically using HAM and numerically by the fourth order Runge–Kutta integration scheme with shooting method.The effects of different controlling parameters on the dimensionless velocity,temperature and nanoparticle volume fraction profiles are discussed graphically.The reduced Nusslet number and the local Sherwood number are tabulated.It is found that the nanosolid volume fraction profile decreases in the presence of heat generation and increases in the case of heat absorption and a reverse trend is observed in velocity profile.An excellent agreement is observed between present analytical and numerical results.Furthermore,comparisons have been made with bench mark solutions for a special case and obtained a very good agreement.
文摘Thermal losses for a buried vertical thin plate can be expressed as a function of the assigned temperature distribution,the medium conductivity and the geometrical properties that describe the model. When the geometricalproperties reduce to one, the plate-ground thermal resistance can be expressed regardless of plate dimension, dependingonly on temperature distribution given at surface plate and its temperature difference with medium.
文摘In this paper oscillatory 2-D natural convection from a vertical isothermal wall embedded in a po- rous medium, and originating from the oscillation of longitudinal fluid flow, has been investigated both analytically and numerically. Two asymptotic solutions, valid for large and small values of dimensionless frequency γ respectively, are obtained in the closed form. In the range where the asymptotic solutions break down, numerical results to the governing equations are obtained by local similarity meth- od. Both numerical and analytical results show that pulsatory components of the flow and heat transfer depend only on the parameter γ, and the effect of longitudinal oscillation is to decrease the magnitude or' pulsatory Nusselt number with a phase lag between 0 and 90 deg. A correlation for pulsatory heat trans- fer rates is proposed in the whole range of γ within 3% accuracy compared with the numerical results.
基金financially supported by the National Natural Science Foundation of China(Grant No.11702244)the Project of the Cooperation of Zhoushan City and Zhejiang University(Grant No.2017C82223)+1 种基金the Open Foundation of Key Laboratory of Port,Waterway and Sedimentation Engineering of the Ministry of Transport(Grant No.Yn216006)the Fundamental Research Funds for the Central Universities(WUT:2017IVA009)
文摘Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched eigenfunction expansion method and a least square approach, the analytical solutions are sought for the established boundary value problem. The effects of the incidence angle, location of step, depth ratio of deep to shallow waters,and column width between two plates, on the reflection coefficients, the horizontal wave forces acting on the two plates, and the mean surface elevation between the two plates, are numerically examined under a variety of wave conditions. The results show that the existence of the stepped bottom between two plates considerably impacts the hydrodynamic performances of the present system. It is found that the effect of stepped bottom on the reflection coefficient of the present two-plate structure is evident only with waves of the low dimensionless frequency.Moreover, the influence of the step location on the hydrodynamic performance of the present two-plate structure is slight if the step is placed in between the two plates.
基金Project supported by the National Natural Science Foundation of China(Grant No.61176069)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-11-0062)Project of 51308020304
文摘A new silicon-on-insulator (SOI) power lateral MOSFET with a dual vertical field plate (VFP) in the oxide trench is proposed. The dual VFP modulates the distribution of the electric field in the drift region, which enhances the internal field of the drift region and increases the drift doping concentration of the drift region, resulting in remarkable improvements in breakdown voltage (BV) and specific on-resistance (Ron,sp). The mechanism of the VFP is analyzed and the characteristics of BV and Ron,sp are discussed. It is shown that the BV of the proposed device increases from 389 V of the conventional device to 589 V, and the Ron,sp decreases from 366 mΩ·cm2 to 110 mΩ·cm2.
文摘In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient kt decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient kr takes the opposite trend. Therefore, it is possible to achieve kt values smaller than 0.25 and kr values larger than 0.80 when B/L is larger than 0.25 for the case of l/h-1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant nos. 50639030 and 50979070) and the 863 Program of China (Grant no. 2006AA09Z348).
文摘Experimental and theoretical studies of drag embedment plate anchors recently carried out in Tianjin University are summarized in this research paper, which involve a series of important topics relevant to the study of drag anchors. The techniques for measuring the trajectory and movement direction of drag anchors in soils, the techniques for measuring the moving embedment point and reverse eatenary shape of the embedded drag line, the penetration mechanism and kinematic behavior of drag anchors, the ultimate embedment depth of drag anchors, the movement direction of the anchor with an arbitrary fluke section, the reverse catenary properties of the embedded drag line, the interaetional properties between drag anchor and installation line, the kinematic model of drag anchors in seabed soils, and the analytical method for predicting the anchor trajectory in soils will all be examined. The present work remarkably reduces the uncertainties in design and analysis of drag embedment plate anchors, and is beneficial to improving the application of this new type of drag anchor in offshore engineering.
文摘Momentum and energy laminar boundary layers of an incompressible fluid with thermal radiation about a moving plate in a quiescent ambient fluid are investigated numerically. Also, it has been underlined that the analysis of the roles of both velocity and temperature gradient at infinity is of key relevance for our results.
基金Project supported by the Applied Basic Research Project funded by Ministry of Transport,China(Grant No.2014329224380)the National Natural Science Foundation of China(Grant No.51409135)the Tianjin Applied Basic and Frontier Technology Research Project(Grant No.15JCQNJC07300)
文摘This paper analyzes the wave absorption efficiency of multi-layer perforated plates in an ideal fluid, based on the linear potential flow theory. The influence of the thickness, the porosity and the layout form of the plates on the wave absorptivity is studied on the assumption that all perforated plates are composed of the same materials and have the same thickness and porosity. The calculation results indicate that the larger the number of layers of the perforated plate set, the better the wave absorption efficiency, however, when the layer number exceeds a certain value, the efficiency of the plates is not significantly increased. For the case of porosity ?= 0.2, thickness b= 0.07 m and 4 layers of perforated plates with a distance l= 1.0 m between the layers, 90% of the energy of the wave within the incident wave period between 1.6 s and 4.4 s can be absorbed.
基金Supported by the National Natural Science Foundations of China under Grant No 50476083.
文摘We present a theoretical analysis for fully developed convective beat transfer in a circular tube for power law fluids by assuming that the thermal diffusivity is a function of temperature gradient. The analytical eolution is obtained and the heat transfer behaviour is investigated under a constant heat flux boundary condition. It is shown that the Nusselt number strongly depends on the value of power law index n. The Nusselt number sharply decreases in the range of 0 〈 n 〈 0.1. However, for n 〉 0.5, the Nusselt number decreases monotonically with the increasing n, and for n 〉 20, the values of Nusselt number approach a constant.
基金Project supported by the National Natural Science Foundtion of China(No.61404011)the Research and Innovation Project of Graduate Students of Changsha University of Science&Technology(No.CX2017SS25)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(No.15C0034)the Introduction of Talents Project of Changsha University of Science Technology(No.1198023)
文摘An ultralow specific on-resistance high-k LDMOS with vertical field plate(VFP HK LDMOS) is proposed. The high-k dielectric trench and highly doped interface N+ layer are made in bulk silicon to reduce the surface field of the drift region in the VFP HK LDMOS. The gate vertical field plate(VFP) pinning in the high-k dielectric trench can modulate the bulk electric field. The high-k dielectric not only provides polarized charges to assist depletion of the drift region, so that the drift region and high-k trench maintain charge balance adaptively,but also can fully assist in depleting the drift region to increase the drift doping concentration and reshape the electric field to avoid premature breakdown. Compared with the conventional structure, the VFP HK LDMOS has the breakdown voltage of 629.1 V at the drift length of 40 μm and the specific on-resistance of 38.4 mΩ·cm^2 at the gate potential of 15 V. Then the power figure of merit is 10.31 MW/cm^2.
基金supported by the Science Council under Project No.NSC96-2221-E-019-063
文摘This paper investigates the reflection of normal incident waves produced by absorbing-type breakwaters. The absorbing-type breakwaters in this study consist of a vertical porous plate, a submerged permeable caisson, and an impermeable back wall. The flow field is divided into four regions: a porous caisson region, and three pure water regions. Under the assumptions of linear wave theory, Darcy's law in the perforated wall, and the pore velocity potential theory of Sollitt and Cross (1972) in the porons caisson region, this study creates a 2-D BEM model to calculate the reflection coefficients of water waves using several breakwater properties. This numerical model is calibrated by previous numerical studies and limiting cases for a partially perforated-wall caisson breakwater and a vertical porous breakwater with an impermeable back wall. Generally speaking, the wave dissipation in absorbing-type breakwaters is bigger than that for a partially perforatedwall caisson breakwater. The reflection coefficient values imply the performance of wave absorbers in this study. Therefore, we examine the major factors that affect the reflection coefficient.