To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University....To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.The following results were obtained.(1)As the motion intensity increased,the peak acceleration in soil layers at different depths significantly decreased,indicating that the soil stiffness was significantly reduced.(2)During the motion process,the instantaneous bending moment of the vertical and batter pile groups at different depths changed continuously,which had a strong relationship with the saturated sand liquefaction.In the process of sand liquefaction,the residual bending moment generated by the batter pile was more obvious than that of the vertical pile.(3)With the liquefaction of the saturated sand,the distribution of the maximum bending moment of the vertical pile group changed,and the bending moment near the pile cap of the vertical and batter pile groups was always large.(4)In certain cases,the horizontal acceleration and dynamic displacement of the vertical pile cap were amplified.When the motion intensity was large,residual displacement of the batter pile cap occurred.展开更多
The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode o...The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.展开更多
The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the sect...The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.展开更多
To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and...To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.展开更多
The bubble migration in liquid titanium alloy melt during vertical centrifugal casting process has been predicted. The effects of different parameters, such as the initial bubble location, the mold rotational speed an...The bubble migration in liquid titanium alloy melt during vertical centrifugal casting process has been predicted. The effects of different parameters, such as the initial bubble location, the mold rotational speed and the mold rotational direction on the bubble in the migration process are investigated. The results show that the bubble migration can be divided into the radial movement to the mould rotation axis and the circular movement to the mould wall opposite to rotational direction of the casting mould. The casting mould wall has an impeditive effect on the circular movement of the bubble during its migration process. And the bubble finally migrates like a straight line along the mould wall located at the opposite direction of the rotational casting mould whether it rotates clockwise or anti-clockwise. The bubbles at the position near the mould wall located at the opposite direction of the rotational casting mould are much easier to migrate in a straight line. The instantaneous speed of the gas bubble increases with the increment of the mould rotational speed. However the mould rotational speed is high or low, the moving speed of the gas bubble increases slightly at the primary stage, and then decreases gradually like a ladder.展开更多
A mathematical model of the centrifugal filling process was established. The calculated results show that the centrifugal field has an important influence on the filling process. Moreover, the process of liquid flow a...A mathematical model of the centrifugal filling process was established. The calculated results show that the centrifugal field has an important influence on the filling process. Moreover, the process of liquid flow and the location of free surface in sprue were simulated based on the Solution Algorithm-Volume of Fraction (SOLA-VOF) technique. In order to verify the mathematical model and computational results, hydraulic simulation experiment was carried out. The results of experiments and numerical simulation indicate the accuracy of mathematical model. Two kinds of filling methods were investigated and the results show that the bottom filling is better than the top filling that can achieve stable filling and reduce defects.展开更多
为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连...为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连接松动故障的振动特性敏感性更高,轴系的振动信号对转子故障的振动特性敏感性更高;转子不平衡故障和转子不对中故障表现出不同的频谱特征,转子不平衡故障的频谱特征表现为1倍振动主要频率(amplitude power frequency,APF)幅值增大,且随着故障程度的增加,幅值呈现了逐渐减小的趋势,转子不对中故障的频谱特征表现为产生新的振动特征频率2APF,且随着故障程度的增大,信号幅值逐渐增大;支座连接松动故障表现为频谱图中的主频变为3APF,并出现新的2APF和1/2分数谐波频率.展开更多
Vertical centrifugal casting can significantly enhance the filling capability of molten metals,enabling the production of complex thin-walled castings at near-rapid cooling rates.In this study,the melt flow,solidifica...Vertical centrifugal casting can significantly enhance the filling capability of molten metals,enabling the production of complex thin-walled castings at near-rapid cooling rates.In this study,the melt flow,solidification structures,and defects in 316 L steel cast strips with a geometry of 80 mm×60 mm×2.5 mm produced by vertical centrifugal casting were numerically and experimentally analyzed under different rotation speeds.With gradually increasing the rotation speed from 150 r/min to 900 r/min,the simulated results showed the shortest filling time and minimum porosity volume in the cast strip at a rotation speed of 600 r/min.Since a strong turbulent flow was generated by the rotation of the mold cavity during the filling process,experimental results showed that a“non-dendritic”structure was obtained in 316 L cast strip when centrifugal force was involved,whereas the typical dendritic structure was observed in the reference sample without rotation.Most areas of the cast strip exhibited one-dimensional cooling,but three-sided cooling appeared near the side of the cast strip.Moreover,the pores and cracks in the 316 L strips were detected by computed tomography scanning and analyzed with the corresponding numerical simulations.Results indicated the existence of an optimal rotational speed for producing cast strips with minimal casting defects.This study provides a better understanding of the filling and solidification processes of strips produced by vertical centrifugal casting.展开更多
The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal f...The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal flow characteristics in the original and optimized models was carried out with special attention to the hydraulic component matching.The optimized model(model B)was obtained by optimizing the vaned diffuser and volute based on the original model(model A),mainly the diffuser inlet diameter,diffuser inlet vane angle,volute channel inlet width and volute throat area were changed.Firstly,the comparative results on performance and energy losses of two models showed that the efficiency and head of model B was significantly increased under design and part-load conditions.It is mainly due to the dramatic reduction of energy loss PL in the diffuser and volute.Then,the comparisons of PL and flow patterns in the vaned diffuser showed that the matching optimization between the model B impeller outlet flow angle and diffuser inlet vane angle resulted in a better flow pattern in both the circumferential and axial directions of the diffuser,which leads to the PL3 reduction.The meridian velocity Vm of model B was significantly increased at diffuser inlet regions and resulted in improvements of flow patterns at diffuser middle and outlet regions as well as pressure expansion capacity.Finally,the comparisons of PL and flow characteristics in the volute showed that the turbulence loss reduction in the model B volute was due to the flow pattern improvement at diffuser outlet regions which provided better flow conditions at volute inlet regions.The matching optimization between the diffuser and volute significantly reduced the turbulence loss in volute sections 1–4 and enhanced the pressure expansion capacity in sections 8–10.展开更多
基金National Natural Science Foundation of China under Grant No.51778207,Natural Science Foundation of Hebei Province under Grant No.E2018202107,Project of Graduate Students′Innovative Ability Training of Hebei Province under Grant No.CXZZBS2019041。
文摘To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.The following results were obtained.(1)As the motion intensity increased,the peak acceleration in soil layers at different depths significantly decreased,indicating that the soil stiffness was significantly reduced.(2)During the motion process,the instantaneous bending moment of the vertical and batter pile groups at different depths changed continuously,which had a strong relationship with the saturated sand liquefaction.In the process of sand liquefaction,the residual bending moment generated by the batter pile was more obvious than that of the vertical pile.(3)With the liquefaction of the saturated sand,the distribution of the maximum bending moment of the vertical pile group changed,and the bending moment near the pile cap of the vertical and batter pile groups was always large.(4)In certain cases,the horizontal acceleration and dynamic displacement of the vertical pile cap were amplified.When the motion intensity was large,residual displacement of the batter pile cap occurred.
基金financially supported by the National Natural Science Foundation of China(Grant No.51475120)the Project of Science and Technology of Henan Province of China(2018QNJH25,182102110096)
文摘The mold filling process of titanium alloy in a thin-walled cylinder cavity under vertical centrifugal casting process was studied by means of the hydraulic simulation experiments. Results show that the filling mode of the melt in the cylinder cavity varies with casting wall-thickness. When the casting wall-thickness is less than or equal to the thickness of the first layer during the filling process, the melts fill the cavity from the bottom to the top.When the casting wall-thickness is greater than the thickness of the first layer during the filling process, the melts first fill the largest radius parts of the cavity with a certain thickness of the first layer from the bottom to the top of the cavity, and then they fill the cavity from the larger radius part to the smaller radius part. The melt filling ability increases with the increment of the mold rotational speed and the pouring temperature. In another aspect, the melt filling ability rises with the decrement of the melt viscosity, and the melt with the better filling ability is prone to fill the cylinder cavity layer by layer.
基金by the National Natural Science Foundation of China under grant No. 50775050the State Key Laboratory of Solidif ication Processing in NWPU (200702)
文摘The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.
基金Project(2012AA112504) supported by the National High Technology Research and Development Program of ChinaProjects(51108048,51478054) supported by the National Natural Science Foundation of China
文摘To obtain the vertical earth pressure on a soft foundation box culvert and investigate the interaction of the soil-culvert-foundation system, both a centrifugal model test and a numerical simulation were conducted and the comparisons with the current methods to determine the load on a culvert were completed. The results of the model test and numerical analysis are in satisfactory agreement, which shows that the direction of the shear stress between the culvert and the adjacent embankment depends on the differential settlement between them. A vertical earth pressure concentration appears on the culvert with a rigid piles foundation because of a downward shear stress. The ratio of the load on a soft foundation culvert and the overburden pressure above the culvert raises first and then decreases as the backfill height increases. In order to reduce the load on a culvert, it is suggested to limit the stiffness difference of the foundations under the culvert and embankment and to use a light backfill over the culvert.
基金Sponsored by the National Natural Science Foundation of China(Grant No.U1604254)the Initial Scientific Research Fund of Young Teachers in Henan University of Technology(Grant No.2013BS050)
文摘The bubble migration in liquid titanium alloy melt during vertical centrifugal casting process has been predicted. The effects of different parameters, such as the initial bubble location, the mold rotational speed and the mold rotational direction on the bubble in the migration process are investigated. The results show that the bubble migration can be divided into the radial movement to the mould rotation axis and the circular movement to the mould wall opposite to rotational direction of the casting mould. The casting mould wall has an impeditive effect on the circular movement of the bubble during its migration process. And the bubble finally migrates like a straight line along the mould wall located at the opposite direction of the rotational casting mould whether it rotates clockwise or anti-clockwise. The bubbles at the position near the mould wall located at the opposite direction of the rotational casting mould are much easier to migrate in a straight line. The instantaneous speed of the gas bubble increases with the increment of the mould rotational speed. However the mould rotational speed is high or low, the moving speed of the gas bubble increases slightly at the primary stage, and then decreases gradually like a ladder.
基金Project(LHK-04025) supported by the Postdoctoral Startup Fund of Heilongjiang Province, China Project(50434030) supported by the National Natural Science Foundation of China
文摘A mathematical model of the centrifugal filling process was established. The calculated results show that the centrifugal field has an important influence on the filling process. Moreover, the process of liquid flow and the location of free surface in sprue were simulated based on the Solution Algorithm-Volume of Fraction (SOLA-VOF) technique. In order to verify the mathematical model and computational results, hydraulic simulation experiment was carried out. The results of experiments and numerical simulation indicate the accuracy of mathematical model. Two kinds of filling methods were investigated and the results show that the bottom filling is better than the top filling that can achieve stable filling and reduce defects.
文摘为了给立式离心泵的故障诊断提供试验和理论依据,搭建立式离心泵仿真试验台,进行立式离心泵典型故障的仿真复现试验,分析了转子不平衡、转子不对中和支座连接松动等故障的振动特性及其频谱特征.结果表明:机脚处的振动位移信号对支座连接松动故障的振动特性敏感性更高,轴系的振动信号对转子故障的振动特性敏感性更高;转子不平衡故障和转子不对中故障表现出不同的频谱特征,转子不平衡故障的频谱特征表现为1倍振动主要频率(amplitude power frequency,APF)幅值增大,且随着故障程度的增加,幅值呈现了逐渐减小的趋势,转子不对中故障的频谱特征表现为产生新的振动特征频率2APF,且随着故障程度的增大,信号幅值逐渐增大;支座连接松动故障表现为频谱图中的主频变为3APF,并出现新的2APF和1/2分数谐波频率.
基金financially supported by the National MCF Energy R&D Program of China(Grant No.2018YFE0306102)the National Natural Science Foundation of China(Grant No.51974184).
文摘Vertical centrifugal casting can significantly enhance the filling capability of molten metals,enabling the production of complex thin-walled castings at near-rapid cooling rates.In this study,the melt flow,solidification structures,and defects in 316 L steel cast strips with a geometry of 80 mm×60 mm×2.5 mm produced by vertical centrifugal casting were numerically and experimentally analyzed under different rotation speeds.With gradually increasing the rotation speed from 150 r/min to 900 r/min,the simulated results showed the shortest filling time and minimum porosity volume in the cast strip at a rotation speed of 600 r/min.Since a strong turbulent flow was generated by the rotation of the mold cavity during the filling process,experimental results showed that a“non-dendritic”structure was obtained in 316 L cast strip when centrifugal force was involved,whereas the typical dendritic structure was observed in the reference sample without rotation.Most areas of the cast strip exhibited one-dimensional cooling,but three-sided cooling appeared near the side of the cast strip.Moreover,the pores and cracks in the 316 L strips were detected by computed tomography scanning and analyzed with the corresponding numerical simulations.Results indicated the existence of an optimal rotational speed for producing cast strips with minimal casting defects.This study provides a better understanding of the filling and solidification processes of strips produced by vertical centrifugal casting.
基金Project supported by the National Natural Science Foundation of China(Grant No.51979125)supported by the Jiangsu Provincial Science Fund for Distinguished Young Scholars(Grant No.BK20211547)+2 种基金the Technological Innovation Team Project in Colleges and Universities of Jiangsu Province(Grant No.SKJ(2021)-1)the Open Research Subject of Key Laboratory of Fluid Machinery and Engineering(Xihua University)of Sichuan Province(Grant No.LTDL-2022007)the Graduate Research and Innovation Projects of Jiangsu Province(Grant No.KYCX23_3701).
文摘The purpose of this paper is to investigate the performance improvement mechanism of a high power vertical centrifugal pump by using numerical calculations.Therefore,a comparative study of energy losses and internal flow characteristics in the original and optimized models was carried out with special attention to the hydraulic component matching.The optimized model(model B)was obtained by optimizing the vaned diffuser and volute based on the original model(model A),mainly the diffuser inlet diameter,diffuser inlet vane angle,volute channel inlet width and volute throat area were changed.Firstly,the comparative results on performance and energy losses of two models showed that the efficiency and head of model B was significantly increased under design and part-load conditions.It is mainly due to the dramatic reduction of energy loss PL in the diffuser and volute.Then,the comparisons of PL and flow patterns in the vaned diffuser showed that the matching optimization between the model B impeller outlet flow angle and diffuser inlet vane angle resulted in a better flow pattern in both the circumferential and axial directions of the diffuser,which leads to the PL3 reduction.The meridian velocity Vm of model B was significantly increased at diffuser inlet regions and resulted in improvements of flow patterns at diffuser middle and outlet regions as well as pressure expansion capacity.Finally,the comparisons of PL and flow characteristics in the volute showed that the turbulence loss reduction in the model B volute was due to the flow pattern improvement at diffuser outlet regions which provided better flow conditions at volute inlet regions.The matching optimization between the diffuser and volute significantly reduced the turbulence loss in volute sections 1–4 and enhanced the pressure expansion capacity in sections 8–10.