Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, mot...Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.展开更多
A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem model...A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.展开更多
The paper proposes a nonlinear optimal control approach for the model of the vertical take off and landing(VTOL)aircraft.This aerial drone receives as control input a directed thrust,as well as forces acting on its wi...The paper proposes a nonlinear optimal control approach for the model of the vertical take off and landing(VTOL)aircraft.This aerial drone receives as control input a directed thrust,as well as forces acting on its wing tips.The latter forces are not perpendicular to the body axis of the drone but are tilted by a small angle.The dynamic model of the VTOL undergoes ap-proximate linearization with the use of Taylor series expansion around a temporary operating point which is recomputed at each iteration of the control method.For the approximately linearized model,an H-infinity feedback controller is designed.The linearization procedure relies on the computation of the Jacobian matrices of the state-space model of the VTOL aircraft.The proposed control method stands for the solution of the optimal control problem for the nonlinear and multivariable dynamics of the aerial drone,under model uncertainties and external per-turbations.For the computation of the contollr's feedback gains,an algebraic Riccati equation is solved at each time-step of the control method.The new nonlinear optimal control approach achieves fast and accurate tracking for all state variables of the VTOL aircnaft,under moderate variations of the control inputs.The stability properties of the control scheme are proven through Lyapunov analysis.展开更多
飞行控制系统作为电动垂直起降(electric vertical take-off and landing,eVTOL)飞行器的关键机载系统,需要具备和民机同样的安全性。为了设计满足eVTOL飞行器需求的飞控系统架构,根据适航规章梳理了安全性要求,并基于安全性要求介绍了e...飞行控制系统作为电动垂直起降(electric vertical take-off and landing,eVTOL)飞行器的关键机载系统,需要具备和民机同样的安全性。为了设计满足eVTOL飞行器需求的飞控系统架构,根据适航规章梳理了安全性要求,并基于安全性要求介绍了eVTOL飞行器飞控系统飞控计算机、传感器和作动器余度设计技术,设计了一种基于安全性考虑的eVTOL飞行器飞控系统架构;分析了eVTOL飞行器旋翼构型下的典型功能危险,并采用故障树进行了安全性分析。结果表明,设计的飞控系统架构的典型功能危险能够满足失效概率的要求。展开更多
根据旋翼机和固定翼飞机的气动理论开发了一个综合方法过程用于估算电动垂直起降(Electric vertical takeoff and landing, e VTOL)飞行器的飞行性能。这种飞机通常采用多旋翼垂直飞行,螺旋桨和机翼的不同组合方式实现飞行。其中,对旋...根据旋翼机和固定翼飞机的气动理论开发了一个综合方法过程用于估算电动垂直起降(Electric vertical takeoff and landing, e VTOL)飞行器的飞行性能。这种飞机通常采用多旋翼垂直飞行,螺旋桨和机翼的不同组合方式实现飞行。其中,对旋翼和螺旋桨的气动性能采用传统动量理论分析和旋翼元素分析。本文利用此综合理论研究了12架e VTOL飞行器的飞行性能,包括多旋翼飞行器、矢量推进飞行器和升力巡航飞行器。计算了悬停、爬升和下降以及巡航水平飞行,不同飞行状态时驱动电机、旋翼和机身的飞行特性。据此,可以进一步确定电力推进系统的性能指标,以匹配螺旋桨或旋翼,从而满足飞行任务。展开更多
Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span styl...Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span style="font-family:Verdana;"> com</span><span style="font-family:Verdana;">pared to tilt-wings or tilt-rotors in the pre-80’s era. Radio-controlled </span><span style="font-family:Verdana;">aerobatic airplanes have thrust-to-weight ratio of greater than unity and are capable of performing a range of impressive maneuvers including the so-called harrier maneuver. We hereby present a new maneuver known as the retarded harrier </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that is applicable to un/manned fixed-wing aircraft for achieving VTOL flight with a better forward flight performance than a quadplane in terms of weight, speed and esthetics.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> An airplane with tandem roto-stabilizers is also presented as an efficient airframe to achieve VTOL via retarded harrier maneuver, and detailed analysis is given for hovering at 45° and 60° and comparison is made against the widely adopted quadplane. This work also includes experimental demonstration of retarded harrier maneuver using a small remotely pilot airplane of wingspan 650 mm.</span></span></span>展开更多
文摘Battery powered vertical takeoff and landing(VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.
文摘A novel method for estimating the space range of battery-powered vertical take-off and landing(VTOL) aircraft is presented. The method is based on flight parameter optimization and numerical iteration. Subsystem models including required thrust, required power and battery discharge models are presented. The problem to be optimized is formulated, and then case study simulation is conducted using the established method for quantitative analysis. Simulation results show that the space range of battery-powered VTOL aircraft in a vertical plane is an oblate curve, which appears horizontally long but vertically short, and the peak point is not located on the vertical climb path. The method and results are confirmed by parameter analysis and validations.
文摘The paper proposes a nonlinear optimal control approach for the model of the vertical take off and landing(VTOL)aircraft.This aerial drone receives as control input a directed thrust,as well as forces acting on its wing tips.The latter forces are not perpendicular to the body axis of the drone but are tilted by a small angle.The dynamic model of the VTOL undergoes ap-proximate linearization with the use of Taylor series expansion around a temporary operating point which is recomputed at each iteration of the control method.For the approximately linearized model,an H-infinity feedback controller is designed.The linearization procedure relies on the computation of the Jacobian matrices of the state-space model of the VTOL aircraft.The proposed control method stands for the solution of the optimal control problem for the nonlinear and multivariable dynamics of the aerial drone,under model uncertainties and external per-turbations.For the computation of the contollr's feedback gains,an algebraic Riccati equation is solved at each time-step of the control method.The new nonlinear optimal control approach achieves fast and accurate tracking for all state variables of the VTOL aircnaft,under moderate variations of the control inputs.The stability properties of the control scheme are proven through Lyapunov analysis.
文摘飞行控制系统作为电动垂直起降(electric vertical take-off and landing,eVTOL)飞行器的关键机载系统,需要具备和民机同样的安全性。为了设计满足eVTOL飞行器需求的飞控系统架构,根据适航规章梳理了安全性要求,并基于安全性要求介绍了eVTOL飞行器飞控系统飞控计算机、传感器和作动器余度设计技术,设计了一种基于安全性考虑的eVTOL飞行器飞控系统架构;分析了eVTOL飞行器旋翼构型下的典型功能危险,并采用故障树进行了安全性分析。结果表明,设计的飞控系统架构的典型功能危险能够满足失效概率的要求。
文摘根据旋翼机和固定翼飞机的气动理论开发了一个综合方法过程用于估算电动垂直起降(Electric vertical takeoff and landing, e VTOL)飞行器的飞行性能。这种飞机通常采用多旋翼垂直飞行,螺旋桨和机翼的不同组合方式实现飞行。其中,对旋翼和螺旋桨的气动性能采用传统动量理论分析和旋翼元素分析。本文利用此综合理论研究了12架e VTOL飞行器的飞行性能,包括多旋翼飞行器、矢量推进飞行器和升力巡航飞行器。计算了悬停、爬升和下降以及巡航水平飞行,不同飞行状态时驱动电机、旋翼和机身的飞行特性。据此,可以进一步确定电力推进系统的性能指标,以匹配螺旋桨或旋翼,从而满足飞行任务。
文摘Modern day VTOL fixed-wing aircraft based on quadplane design is relative<span style="font-family:Verdana;">ly simple and reliable due to lack of complex mechanical components</span><span style="font-family:Verdana;"> com</span><span style="font-family:Verdana;">pared to tilt-wings or tilt-rotors in the pre-80’s era. Radio-controlled </span><span style="font-family:Verdana;">aerobatic airplanes have thrust-to-weight ratio of greater than unity and are capable of performing a range of impressive maneuvers including the so-called harrier maneuver. We hereby present a new maneuver known as the retarded harrier </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">that is applicable to un/manned fixed-wing aircraft for achieving VTOL flight with a better forward flight performance than a quadplane in terms of weight, speed and esthetics.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> An airplane with tandem roto-stabilizers is also presented as an efficient airframe to achieve VTOL via retarded harrier maneuver, and detailed analysis is given for hovering at 45° and 60° and comparison is made against the widely adopted quadplane. This work also includes experimental demonstration of retarded harrier maneuver using a small remotely pilot airplane of wingspan 650 mm.</span></span></span>