An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the M...An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.展开更多
基金Supported by the National Nature Science Foundation of China (41005029 and 40830235)National Basic Research and Development (973) Program of China (2009CB421502)
文摘An integrated vertical-slantwise convective parameterization scheme, based on the vertical Kuo-Anthes and the slantwise Nordeng convective parameterization schemes, is introduced into the MM5 model. By employing the MM5 model with the proposed scheme, numerical simulations of a snowstorm event that occurred over southern China on 28-29 January 2008 and of Typhoon Haitang (2005) are conducted. The results indicate that during the snowstorm event, the atmosphere was convectively stable in the vertical direction but with conditional symmetric instability (CSI) in the lower troposphere, and when the area of CSI developed and extended to upper levels, strong rising motion occurred and triggered the release of large amount of energy, producing enhanced convective precipitation with the total precipitation much closer to the observation. The development and strengthening of CSI corresponded to changes in the intensity of snowfall, convergence, and ascending motions of air, revealing that CSI was responsible for the initiation and growth of the snowstorm. The results from a 72-h explicit simulation of Typhoon Haitang indicate that CSI occurred mainly at lower levels with a well-defined spiral structure, and it tended to have a larger impact on the intensity of typhoon than on its track. The minimum pressure at the typhoon center for the 72-h runs with the integrated vertical-slantwise convective parameterization scheme was on average 3 hPa (maximum 8 hPa) lower than that from the runs with only the vertical cumulus parameterization scheme. Introducing the influence of CSI into the model has improved the warm core structure at the middle and upper levels of the typhoon, with stronger and persistent upward motions causing increased precipitation, and the latent heat released through convection in turn made the typhoon develop further.