In the high precision image measurement system, the verticality error between the axis of the shooting system and the measured object can bring error of the measurement result. The high demand of the system’s vertica...In the high precision image measurement system, the verticality error between the axis of the shooting system and the measured object can bring error of the measurement result. The high demand of the system’s vertical degree is raised by measure system due to the demands of high precision and disposable full field imaging in the micro-parts imaging measurement. The existing method of optical axis verticality detection cannot meet the demand all. In order to achieve the high-precision adjustment of the system optical axis, the algorithm of detecting verticality based on regional image definition is proposed. First, the objected standard image is divided into fixed area. Then, the object plane is moved from the downside to the upside of the focus plane, meanwhile, recording the definition function values of each standard image region at each step, and fitting out the clearest positions of the regions. Finally, according to the inter-regional relations between the locations and the height difference of the each regional clearest position, the small angle between the optical axis and the measured surface can be calculated. The experiment is based on the given image of lithography template with the scale of 10 μm as move unit, and the results show that this method effective reduced the small angle between the system optical axis and the measured body in high-precision image measuring system, the evaluation accuracy is less than 0.1°, meeting the requirements in high-precision measurement. The proposed method of detecting verticality based on regional image definition can evaluate the verticality error between the axis of the shooting system and the measured object accurately, effectively and conveniently.展开更多
This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-di...This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.展开更多
A low-profile,vertically polarized,ultra-wideband array antenna with end-fire beams operating in an ultra-high frequency(UHF)band is developed in this paper.The array antenna consists of 1×16 log-periodic top-hat...A low-profile,vertically polarized,ultra-wideband array antenna with end-fire beams operating in an ultra-high frequency(UHF)band is developed in this paper.The array antenna consists of 1×16 log-periodic top-hat loaded monopole antenna arrays and is feasible to embed into a shallow cavity to further reduce the array height.Capacitance is introduced in the proposed antenna element to reduce profile height and the rectangular top hats are carefully designed to minimize the transverse dimension.Simulated results show that when the antenna array operates in a frequency range of 300 MHz-900 MHz,the end-fire radiation pattern achieves±45°scanning range in the horizontal plane.Then prototypes of the proposed end-fire antenna element and a uniformly spaced linear array(1×2)are fabricated and validated.The end-fire antenna array should be suitable for airborne applications where low-profile and conformal scanning phased antenna arrays with end-fire radiations are required.This design is attractive for airborne platform applications that are used to search,discover,identify,and scout the aerial target with vertically polarized beams.展开更多
Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spati...Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spatio-temporal Tws variations and addresses the relationship between deformation variations observed in the Huang-Huai-Hai River Basin(HHHRB)and local hydrological features.Results indicate that the vertical velocities at the GNSS stations induced by TWS changes are relatively small,and the impacts of the terrestrial water storage changes are mainly reflected in the changes of seasonal characteristics.Although there is a downward TWS trend from 2011 to 2022 in most HHHRB areas,velocities from the vertical displacements of both Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow-On(GFO)and the GNSS reflect that the HHHRB is undergoing an uplift process,while the magnitude of the GRACE/GFO derived velocities is much smaller than that of the GNSS solutions.Common hydrological deformations estimated from GRACE/GFO and GNSS measurements reveal that the TWS-derived displacements can explain 54.5%of the GNSS seasonal variations,with the phases of terrestrial water storage advancing by about one month relative to GNss common signal phases.Moreover,the decrease of the groundwater storage in the HHHRB has been accelerating since 2008.After reaching its lowest level around mid-2020,it began to rise rapidly,which might be closely related to the implementation of the South-North Water Transfer Central Project.展开更多
High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning meth...High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features.展开更多
In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is...In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.展开更多
Aiming to enhance the bandwidth in near-memory computing,this paper proposes a SSA-over-array(SSoA)architecture.By relocating the secondary sense amplifier(SSA)from dynamic random access memory(DRAM)to the logic die a...Aiming to enhance the bandwidth in near-memory computing,this paper proposes a SSA-over-array(SSoA)architecture.By relocating the secondary sense amplifier(SSA)from dynamic random access memory(DRAM)to the logic die and repositioning the DRAM-to-logic stacking interface closer to the DRAM core,the SSoA overcomes the layout and area limitations of SSA and master DQ(MDQ),leading to improvements in DRAM data-width density and frequency,significantly enhancing bandwidth density.The quantitative evaluation results show a 70.18 times improvement in bandwidth per unit area over the baseline,with a maximum bandwidth of 168.296 Tbps/Gb.We believe the SSoA is poised to redefine near-memory computing development strategies.展开更多
A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates th...A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates the genesis mechanism of the cold TP vortex(TPV)by diagnosing reanalysis data and conducting numerical experiments.Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity(PV)forcing from the tropopause and diurnal thermodynamic impact from the surface.As a positive PV anomaly in the lower stratosphere moved towards the TP,the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward,forming isentropic-isplacement ascent and reducing static stability over the TP.The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site,resulting in ascending air in the free atmosphere.This,in conjunction with the descending air in the valley area during the night,produced air stretching just at the TPV genesis site.Because the surface cooling at night increased the surface static stability,the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity.Consequently,the cold TPV was generated over the valley at night.展开更多
Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for...Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.展开更多
The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model(FDTM)in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network(L...The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model(FDTM)in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network(LM-NN)technique.The fractional dengue transmission model(FDTM)consists of 12 compartments.The human population is divided into four compartments;susceptible humans(S_(h)),exposed humans(E_(h)),infectious humans(I_(h)),and recovered humans(R_(h)).Wolbachia-infected and Wolbachia-uninfected mosquito population is also divided into four compartments:aquatic(eggs,larvae,pupae),susceptible,exposed,and infectious.We investigated three different cases of vertical transmission probability(η),namely when Wolbachia-free mosquitoes persist only(η=0.6),when both types of mosquitoes persist(η=0.8),and when Wolbachia-carrying mosquitoes persist only(η=1).The objective of this study is to investigate the effectiveness of Wolbachia in reducing dengue and presenting the numerical results by using the stochastic structure LM-NN approach with 10 hidden layers of neurons for three different cases of the fractional order derivatives(α=0.4,0.6,0.8).LM-NN approach includes a training,validation,and testing procedure to minimize the mean square error(MSE)values using the reference dataset(obtained by solving the model using the Adams-Bashforth-Moulton method(ABM).The distribution of data is 80% data for training,10% for validation,and,10% for testing purpose)results.A comprehensive investigation is accessible to observe the competence,precision,capacity,and efficiency of the suggested LM-NN approach by executing the MSE,state transitions findings,and regression analysis.The effectiveness of the LM-NN approach for solving the FDTM is demonstrated by the overlap of the findings with trustworthy measures,which achieves a precision of up to 10^(-4).展开更多
In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graini...In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.展开更多
Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and...Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities.展开更多
Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation proce...Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation process.Hansbo solution is widely used in practice to consider the effects of drain discharge capacity and smear on the consolidation process.In this study,a computationally efficient diameter reduction method(DRM)obtained from the Hansbo solution is proposed to consider the smear effect without the need to model the smear zone physically.Validated by analytical and numerical results,a diameter reduction factor is analytically derived to reduce the diameter of the drain,while achieving similar solutions of pore pressure dissipation profile as the classical full model of the smear zone and drain.With the DRM,the excess pore pressure u obtained from the reduced drain in the original un-disturbed soil zone is accurate enough for practical applications in numerical models.Such performance of DRM is independent of soil material property.Results also show equally accurate performance of DRM under conditions of multi-layered soils and coupled radial-vertical groundwater flow.展开更多
Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in ...Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.展开更多
Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatori...Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP.展开更多
Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for Mediu...Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.展开更多
Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely s...The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
基金supported by Major Science and Technology Funded Project of National High-grad CNC of China (Grant No. 2009ZX04014-092)Tianjin Municipal Key Natural Science Foundation of China (Grant No. 09JCZDJC26700)
文摘In the high precision image measurement system, the verticality error between the axis of the shooting system and the measured object can bring error of the measurement result. The high demand of the system’s vertical degree is raised by measure system due to the demands of high precision and disposable full field imaging in the micro-parts imaging measurement. The existing method of optical axis verticality detection cannot meet the demand all. In order to achieve the high-precision adjustment of the system optical axis, the algorithm of detecting verticality based on regional image definition is proposed. First, the objected standard image is divided into fixed area. Then, the object plane is moved from the downside to the upside of the focus plane, meanwhile, recording the definition function values of each standard image region at each step, and fitting out the clearest positions of the regions. Finally, according to the inter-regional relations between the locations and the height difference of the each regional clearest position, the small angle between the optical axis and the measured surface can be calculated. The experiment is based on the given image of lithography template with the scale of 10 μm as move unit, and the results show that this method effective reduced the small angle between the system optical axis and the measured body in high-precision image measuring system, the evaluation accuracy is less than 0.1°, meeting the requirements in high-precision measurement. The proposed method of detecting verticality based on regional image definition can evaluate the verticality error between the axis of the shooting system and the measured object accurately, effectively and conveniently.
基金the funding support from National Natural Science Foundation of China(Grant No.42307243)Henan Province Science and Technology Research Project(Grant No.232102321102)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.
文摘A low-profile,vertically polarized,ultra-wideband array antenna with end-fire beams operating in an ultra-high frequency(UHF)band is developed in this paper.The array antenna consists of 1×16 log-periodic top-hat loaded monopole antenna arrays and is feasible to embed into a shallow cavity to further reduce the array height.Capacitance is introduced in the proposed antenna element to reduce profile height and the rectangular top hats are carefully designed to minimize the transverse dimension.Simulated results show that when the antenna array operates in a frequency range of 300 MHz-900 MHz,the end-fire radiation pattern achieves±45°scanning range in the horizontal plane.Then prototypes of the proposed end-fire antenna element and a uniformly spaced linear array(1×2)are fabricated and validated.The end-fire antenna array should be suitable for airborne applications where low-profile and conformal scanning phased antenna arrays with end-fire radiations are required.This design is attractive for airborne platform applications that are used to search,discover,identify,and scout the aerial target with vertically polarized beams.
基金funded by the National Natural Science Foundation of China (NO. 42104028, 42174030 and 42004017)the Project Supported by the Open Fund of Hubei Luojia Laboratory (Grant No. 220100048 and 230100021)Program for Hubei Provincial Science and Technology Innovation Talents (Grant No. 2022EJD010)
文摘Terrestrial water storage(TWs)variations are associated with water mass movements,which may cause the deformation displacements of the Global Navigation Satellite System(GNSS)stations.This study investigates the spatio-temporal Tws variations and addresses the relationship between deformation variations observed in the Huang-Huai-Hai River Basin(HHHRB)and local hydrological features.Results indicate that the vertical velocities at the GNSS stations induced by TWS changes are relatively small,and the impacts of the terrestrial water storage changes are mainly reflected in the changes of seasonal characteristics.Although there is a downward TWS trend from 2011 to 2022 in most HHHRB areas,velocities from the vertical displacements of both Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow-On(GFO)and the GNSS reflect that the HHHRB is undergoing an uplift process,while the magnitude of the GRACE/GFO derived velocities is much smaller than that of the GNSS solutions.Common hydrological deformations estimated from GRACE/GFO and GNSS measurements reveal that the TWS-derived displacements can explain 54.5%of the GNSS seasonal variations,with the phases of terrestrial water storage advancing by about one month relative to GNss common signal phases.Moreover,the decrease of the groundwater storage in the HHHRB has been accelerating since 2008.After reaching its lowest level around mid-2020,it began to rise rapidly,which might be closely related to the implementation of the South-North Water Transfer Central Project.
基金supported by the National Natural Science Foundation of China (Grant No. 62266026)
文摘High-resolution landslide images are required for detailed geomorphological analysis in complex topographic environment with steep and vertical landslide distribution.This study proposed a vertical route planning method for unmanned aerial vehicles(UAVs),which could achieve rapid image collection based on strictly calculated route parameters.The effectiveness of this method was verified using a DJI Mavic 2 Pro,obtaining high-resolution landslide images within the Dongchuan debris flow gully,in the Xiaojiang River Basin,Dongchuan District,Yunnan,China.A three-dimensional(3D)model was constructed by the structure-from-motion and multi-view stereo(SfM-MVS).Micro-geomorphic features were analyzed through visual interpretation,geographic information system(GIS),spatial analysis,and mathematical statistics methods.The results demonstrated that the proposed method could obtain comprehensive vertical information on landslides while improving measurement accuracy.The 3D model was constructed using the vertically oriented flight route to achieve centimeter-level accuracy(horizontal accuracy better than 6 cm,elevation accuracy better than 3 cm,and relative accuracy better than 3.5 cm).The UAV technology could further help understand the micro internal spatial and structural characteristics of landslides,facilitating intuitive acquisition of surface details.The slope of landslide clusters ranged from 36°to 72°,with the majority of the slope facing east and southeast.Upper elevation levels were relatively consistent while middle to lower elevation levels gradually decreased from left to right with significant variations in lower elevation levels.During the rainy season,surface runoff was abundant,and steep topography exacerbated changes in surface features.This route method is suitable for unmanned aerial vehicle(UAV)landslide surveys in complex mountainous environments.The geomorphological analysis methods used will provide references for identifying and describing topographic features.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFC1804301)the National Science Fourdation of China(Grant No.42272279,41902244)partial support from a Discovery Grant awarded by the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘In groundwater hydrology,aquitard heterogeneity is often less considered compared to aquifers,despite its significant impact on groundwater hydraulics and groundwater resources evaluation.A semi-analytical solution is derived for pumping-induced well hydraulics and groundwater budget with consideration of vertical heterogeneity in aquitard hydraulic conductivity(K)and specific storage(S_(s)).The proposed new solution is innovative in its partitioning of the aquitard into multiple homogeneous sub-layers to enable consideration of various forms of vertically heterogeneous K or S_(s).Two scenarios of analytical investigations are explored:one is the presence of aquitard interlayers with distinct K or S_(s) values,a common field-scale occurrence;another is an exponentially depth-decaying aquitard S_(s),a regional-scale phenomenon supported by statistical analysis.Analytical investigations reveal that a low-K interlayer can significantly increase aquifer drawdown and enhance aquifer/aquitard depletion;a high-S_(s) interlayer can noticeably reduce aquifer drawdown and increase aquitard depletion.Locations of low-K or high-S_(s) interlayers also significantly impact well hydraulics and groundwater budget.In the context of an exponentially depth-decaying aquitard S_(s),a larger decay exponent can enhance aquifer drawdown.When using current models with a vertically homogeneous aquitard,half the sum of the geometric and harmonic means of exponentially depth-decaying aquitard S_(s) should be used to calculate aquitard depletion and unconfined aquifer leakage.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDB44000000。
文摘Aiming to enhance the bandwidth in near-memory computing,this paper proposes a SSA-over-array(SSoA)architecture.By relocating the secondary sense amplifier(SSA)from dynamic random access memory(DRAM)to the logic die and repositioning the DRAM-to-logic stacking interface closer to the DRAM core,the SSoA overcomes the layout and area limitations of SSA and master DQ(MDQ),leading to improvements in DRAM data-width density and frequency,significantly enhancing bandwidth density.The quantitative evaluation results show a 70.18 times improvement in bandwidth per unit area over the baseline,with a maximum bandwidth of 168.296 Tbps/Gb.We believe the SSoA is poised to redefine near-memory computing development strategies.
基金supported by the National Natural Science Foundation of China(Grant Nos.42288101 and 42175076)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000).
文摘A cold vortex occurred over the northeastern Tibetan Plateau(TP)on 27 April 2018 and subsequently brought excessive rainfall to the spring farming area in southern China when moving eastward.This study investigates the genesis mechanism of the cold TP vortex(TPV)by diagnosing reanalysis data and conducting numerical experiments.Results demonstrate that the cold TPV was generated in a highly baroclinic environment with significant contributions of positive potential vorticity(PV)forcing from the tropopause and diurnal thermodynamic impact from the surface.As a positive PV anomaly in the lower stratosphere moved towards the TP,the PV forcing at the tropopause pushed the tropospheric isentropic surfaces upward,forming isentropic-isplacement ascent and reducing static stability over the TP.The descent of the tropopause over the TP also produced a tropopause folding over the northeastern TP associated with a narrow high-PV column intruding downwards over the TPV genesis site,resulting in ascending air in the free atmosphere.This,in conjunction with the descending air in the valley area during the night,produced air stretching just at the TPV genesis site.Because the surface cooling at night increased the surface static stability,the aforementioned vertical air-stretching thus converted the produced static stability to vertical vorticity.Consequently,the cold TPV was generated over the valley at night.
基金financially supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.520LH052)the National Natural Science Foundation of China(Grant No.51909164).
文摘Deepsea mining has been proposed since the 1960s to alleviate the lack of resources on land.Vertical hydraulic transport of collected ores from the seabed to the sea surface is considered the most promising method for industrial applications.In the present study,an indoor model test of the vertical hydraulic transport of particles was conducted.A noncontact optical method has been proposed to measure the local characteristics of the particles inside a vertical pipe,including the local concentration and particle velocity.The hydraulic gradient of ore transport was evaluated with various particle size distributions,particle densities,feeding concentrations and mixture flow velocities.During transport,the local concentration is larger than the feeding concentration,whereas the particle velocity is less than the mixture velocity.The qualitative effects of the local concentration and local fluid velocity on the particle velocity and slip velocity were investigated.The local fluid velocity contributes significantly to particle velocity and slip velocity,whereas the effect of the local concentration is marginal.A higher feeding concentration and mixture flow velocity result in an increased hydraulic gradient.The effect of the particle size gradation is slight,whereas the particle density plays a crucial role in the transport.
文摘The purpose of this research work is to investigate the numerical solutions of the fractional dengue transmission model(FDTM)in the presence of Wolbachia using the stochastic-based Levenberg-Marquardt neural network(LM-NN)technique.The fractional dengue transmission model(FDTM)consists of 12 compartments.The human population is divided into four compartments;susceptible humans(S_(h)),exposed humans(E_(h)),infectious humans(I_(h)),and recovered humans(R_(h)).Wolbachia-infected and Wolbachia-uninfected mosquito population is also divided into four compartments:aquatic(eggs,larvae,pupae),susceptible,exposed,and infectious.We investigated three different cases of vertical transmission probability(η),namely when Wolbachia-free mosquitoes persist only(η=0.6),when both types of mosquitoes persist(η=0.8),and when Wolbachia-carrying mosquitoes persist only(η=1).The objective of this study is to investigate the effectiveness of Wolbachia in reducing dengue and presenting the numerical results by using the stochastic structure LM-NN approach with 10 hidden layers of neurons for three different cases of the fractional order derivatives(α=0.4,0.6,0.8).LM-NN approach includes a training,validation,and testing procedure to minimize the mean square error(MSE)values using the reference dataset(obtained by solving the model using the Adams-Bashforth-Moulton method(ABM).The distribution of data is 80% data for training,10% for validation,and,10% for testing purpose)results.A comprehensive investigation is accessible to observe the competence,precision,capacity,and efficiency of the suggested LM-NN approach by executing the MSE,state transitions findings,and regression analysis.The effectiveness of the LM-NN approach for solving the FDTM is demonstrated by the overlap of the findings with trustworthy measures,which achieves a precision of up to 10^(-4).
基金supported by the European Research Council(Research Fund for Coal and Steel)under Grant Agreement number 800757.
文摘In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20210885)the National Natural Science Foundation of China(Grant Nos.52372356,52371277,and 42076005)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010890).
文摘Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities.
基金The authors wish to acknowledge the generous financial sup-port from the Singapore Maritime Institute(SMI)for this research within the project‘Evaluation of In-situ Consolidation of Dredged and Excavated Materials at Reclaimed Next Generation Tuas Port’(Project ID:SMI-2018-MA-01).
文摘Vertical drains are used to accelerate consolidation of clays in ground improvement projects.Smear zones exist around these drains,where permeability is reduced due to soil disturbance caused by the installation process.Hansbo solution is widely used in practice to consider the effects of drain discharge capacity and smear on the consolidation process.In this study,a computationally efficient diameter reduction method(DRM)obtained from the Hansbo solution is proposed to consider the smear effect without the need to model the smear zone physically.Validated by analytical and numerical results,a diameter reduction factor is analytically derived to reduce the diameter of the drain,while achieving similar solutions of pore pressure dissipation profile as the classical full model of the smear zone and drain.With the DRM,the excess pore pressure u obtained from the reduced drain in the original un-disturbed soil zone is accurate enough for practical applications in numerical models.Such performance of DRM is independent of soil material property.Results also show equally accurate performance of DRM under conditions of multi-layered soils and coupled radial-vertical groundwater flow.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0902)the National Natural Science Foundation of China(91747207,41790434)。
文摘Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.41975009,42230610,41840650 and U2242208)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Wang Binbin,2022069).
文摘Ground-based microwave radiometers(MWRs)operating in the K-and V-bands(20–60 GHz)can help us obtain temperature and humidity profiles in the troposphere.Aside from some soundings from local meteorological observatories,the tropospheric atmosphere over the Tibetan Plateau(TP)has never been continuously observed.As part of the Chinese Second Tibetan Plateau Scientific Expedition and Research Program(STEP),the Tibetan Plateau Atmospheric Profile(TPPROFILE)project aims to construct a comprehensive MWR troposphere observation network to study the synoptic processes and environmental changes on the TP.This initiative has collected three years of data from the MWR network.This paper introduces the data information,the data quality,and data downloading.Some applications of the data obtained from these MWRs were also demonstrated.Our comparisons of MWR against the nearest radiosonde observation demonstrate that the TP-PROFILE MWR system is adequate for monitoring the thermal and moisture variability of the troposphere over the TP.The continuous temperature and moisture profiles derived from the MWR data provide a unique perspective on the evolution of the thermodynamic structure associated with the heating of the TP.The TP-PROFILE project reveals that the low-temporal resolution instruments are prone to large uncertainties in their vapor estimation in the mountain valleys on the TP.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFB2601100)the National Natural Science Foundation of China(Grant No.52171246)+4 种基金The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019491911)the Open Research Foundation of the State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology(Grant No.LP2005)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC3136)the Natural Science Foundation of Hunan Province(Grant No.2022JJ20041)Educational Science Foundation of Hunan Province(Grant No.23A0265)。
文摘Ocean waves and Stokes drift are generated by typhoons.This study investigated the characteristics of ocean waves and wave-induced Stokes drift and their effects during Typhoon Mangkhut using European Centre for MediumRange Weather Forecasts(ECMWF)ERA5 datasets and observational data.The results revealed that the typhoon generated intense cyclones and huge typhoon waves with a maximum wind speed of 45 m/s,a minimum pressure of955 h Pa,and a maximum significant wave height of 12 m.The Stokes drift caused by typhoon waves exceeded 0.6m/s,the Stokes depth scale exceeded 18 m,and the maximum Stokes transport reached 6 m^(2)/s.The spatial distribution of 10-m wind speed,typhoon wave height,Stokes drift,Stokes depth,and Stokes transport during the typhoon was highly correlated with the typhoon track.The distribution along the typhoon track showed significant zonal asymmetry,with greater intensity on the right side of the typhoon track than on the left side.These findings provide important insights into the impact of typhoons on ocean waves and Stokes drift,thus improving our understanding of the interactions between typhoons and the ocean environment.This study also investigated the contribution of Stokes transport to the total net transport during typhoons using Ekman-Stokes Numbers as a comparative measure.The results indicated that the ratio of Stokes transport to the total net transport reached up to 50%within the typhoon radius,while it was approximately 30%outside the radius.Strong Stokes transport induced by typhoon waves led to divergence in the transport direction,which resulted in upwelling of the lower ocean as a compensation current.Thus,Stokes transport played a crucial role in the vertical mixing of the ocean during typhoons.The findings suggested that Stokes transport should be paid more attention to,particularly in high latitude ocean regions,where strong winds can amplify its effects.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金financially supported by the National Natural Science Foundation of China(Gramt No.51309122)。
文摘The previous study conducted by Li(2022)demonstrates that the Goda graph can be adequately represented by a solitary-wave-like form across the entire range of relative water depth,with the exception of the extremely shallow zone.However,it remains uncertain whether this form is equally effective when applied to test data generated by irregular waves,as the Goda graph was initially developed based on overtopping data from regular wave tests.Additionally,it is unclear whether this form is suitable for formulating overtopping discharge at composite vertical walls.In order to address these questions,a 2D overtopping experiment was conducted,incorporating both simple and composite types of vertical walls,with various relative water depths across the entire range,excluding the extremely shallow zone.A novel analysis procedure was developed,which proved to be highly productive and can be considered a general method for data fitting.Ultimately,the study yielded two conclusions:(1)the solitary-wave-like form is remarkably effective in formulating overtopping test data generated by irregular waves,regardless of whether the vertical wall is simple or composite,and(2)the resulting formulas exhibit definitely better performance compared with existing formulas.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.