Following the idea of Speziale's Very Large Eddy Simulation (VLES) method, a new unified hybrid simulation approach was proposed which can change seamlessly from RANS (Reynolds-Averaged Navier-Stokes) to LES (La...Following the idea of Speziale's Very Large Eddy Simulation (VLES) method, a new unified hybrid simulation approach was proposed which can change seamlessly from RANS (Reynolds-Averaged Navier-Stokes) to LES (Large Eddy Simulation) method depending on the numerical resolution. The model constants were calibrated in accordance with other hybrid methods. Besides being able to approach the two limits of RANS and LES, the new model also provides a proper VLES mode between the two limits, and thus can be used for a wide range of mesh resolutions. Also RANS simulation can be recovered near the wall which is similar to the Detached Eddy Simulation (DES) concept. This new methodology was implemented into Wilcox's κ- ω model and applications were conducted for fully developed turbulent channel flow at ReT = 395 and turbulent flow past a square cylinder at Re = 22000. Results were compared with LES predictions and other studies. The new method is found to be quite efficient in resolving large flow structures, and can predict satisfactory results on relative coarse mesh.展开更多
The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulat...The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulation (VLES) model commonly used for the separation flow simulation still has certain limitations in simulating such rotating separation flow: (1) The Reynolds stress level is overestimated in the near-wall region. (2) The influence of the rotating effect cannot be effectively considered. The above two limitations affect the simulation accuracy of the VLES model for the rotating separation flow under small flow conditions in the axial flow rotating machinery. The objective of this paper is to provide a new hybrid unsteady Reynolds average Navier-Stokes/large eddy simulation (URANS/LES) model suitable for the simulation of the rotating separation flow in an axial flow rotating machinery. Compared with the original VLES method, the modifications are as follows: (1) A Reynolds stress damping function in the near-wall region is introduced to reduce the overestimation of the Reynolds stress caused by the near-wall Reynolds average Navier-Stokes (RANS) behavior of the VLES model. (2) A control function driven by the vortex is introduced to reflect the influence of the rotating effect. Three typical cases are used to verify the calculation accuracy of the modified model. It is shown that the modified model can capture more turbulent vortices based on the URANS grids, and the prediction accuracy of the rotating separation flow is effectively improved. Compared with the original VLES model, the modified model can accurately predict the head change in the hump region of the axial flow pump.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50936005)the National Basic Research Program of China (Grant No. 2010CB227302)
文摘Following the idea of Speziale's Very Large Eddy Simulation (VLES) method, a new unified hybrid simulation approach was proposed which can change seamlessly from RANS (Reynolds-Averaged Navier-Stokes) to LES (Large Eddy Simulation) method depending on the numerical resolution. The model constants were calibrated in accordance with other hybrid methods. Besides being able to approach the two limits of RANS and LES, the new model also provides a proper VLES mode between the two limits, and thus can be used for a wide range of mesh resolutions. Also RANS simulation can be recovered near the wall which is similar to the Detached Eddy Simulation (DES) concept. This new methodology was implemented into Wilcox's κ- ω model and applications were conducted for fully developed turbulent channel flow at ReT = 395 and turbulent flow past a square cylinder at Re = 22000. Results were compared with LES predictions and other studies. The new method is found to be quite efficient in resolving large flow structures, and can predict satisfactory results on relative coarse mesh.
基金the National Natural Science Foundation of China(Grant Nos.51836010,51779258).
文摘The internal flow in an axial flow rotating machinery is affected by the rotating characteristics, often accompanied by a strong rotating separation under small flow conditions. At present, the very large eddy simulation (VLES) model commonly used for the separation flow simulation still has certain limitations in simulating such rotating separation flow: (1) The Reynolds stress level is overestimated in the near-wall region. (2) The influence of the rotating effect cannot be effectively considered. The above two limitations affect the simulation accuracy of the VLES model for the rotating separation flow under small flow conditions in the axial flow rotating machinery. The objective of this paper is to provide a new hybrid unsteady Reynolds average Navier-Stokes/large eddy simulation (URANS/LES) model suitable for the simulation of the rotating separation flow in an axial flow rotating machinery. Compared with the original VLES method, the modifications are as follows: (1) A Reynolds stress damping function in the near-wall region is introduced to reduce the overestimation of the Reynolds stress caused by the near-wall Reynolds average Navier-Stokes (RANS) behavior of the VLES model. (2) A control function driven by the vortex is introduced to reflect the influence of the rotating effect. Three typical cases are used to verify the calculation accuracy of the modified model. It is shown that the modified model can capture more turbulent vortices based on the URANS grids, and the prediction accuracy of the rotating separation flow is effectively improved. Compared with the original VLES model, the modified model can accurately predict the head change in the hump region of the axial flow pump.