期刊文献+
共找到24,065篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional multi-constraint route planning of unmanned aerial vehicle low-altitude penetration based on coevolutionary multi-agent genetic algorithm 被引量:8
1
作者 彭志红 吴金平 陈杰 《Journal of Central South University》 SCIE EI CAS 2011年第5期1502-1508,共7页
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir... To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast. 展开更多
关键词 unmanned aerial vehicle (UAV) low-altitude penetration three-dimensional (3D) route planning coevolutionary multiagent genetic algorithm (CE-MAGA)
下载PDF
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner 被引量:2
2
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 Shaped charge Chemical vapor deposition TUNGSTEN Double-layer charge liner X-ray penetration
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
3
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 High-speed penetration Concrete target EROSION Projectile nose evolution model
下载PDF
Efficient Penetration Testing Path Planning Based on Reinforcement Learning with Episodic Memory
4
作者 Ziqiao Zhou Tianyang Zhou +1 位作者 Jinghao Xu Junhu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2613-2634,共22页
Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attack... Intelligent penetration testing is of great significance for the improvement of the security of information systems,and the critical issue is the planning of penetration test paths.In view of the difficulty for attackers to obtain complete network information in realistic network scenarios,Reinforcement Learning(RL)is a promising solution to discover the optimal penetration path under incomplete information about the target network.Existing RL-based methods are challenged by the sizeable discrete action space,which leads to difficulties in the convergence.Moreover,most methods still rely on experts’knowledge.To address these issues,this paper proposes a penetration path planning method based on reinforcement learning with episodic memory.First,the penetration testing problem is formally described in terms of reinforcement learning.To speed up the training process without specific prior knowledge,the proposed algorithm introduces episodic memory to store experienced advantageous strategies for the first time.Furthermore,the method offers an exploration strategy based on episodic memory to guide the agents in learning.The design makes full use of historical experience to achieve the purpose of reducing blind exploration and improving planning efficiency.Ultimately,comparison experiments are carried out with the existing RL-based methods.The results reveal that the proposed method has better convergence performance.The running time is reduced by more than 20%. 展开更多
关键词 Intelligent penetration testing penetration testing path planning reinforcement learning episodic memory exploration strategy
下载PDF
The penetration depth of atomic radicals in tubes with catalytic surface properties
5
作者 Domen PAUL Miran MOZETIC +3 位作者 Rok ZAPLOTNIK Alenka VESEL Gregor PRIMC Denis DONLAGIC 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期157-164,共8页
Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules ... Catalysis of molecular radicals is often performed in interesting experimental configurations.One possible configuration is tubular geometry.The radicals are introduced into the tubes on one side,and stable molecules are exhausted on the other side.The penetration depth of radicals depends on numerous parameters,so it is not always feasible to calculate it.This article presents systematic measurements of the penetration depth of oxygen atoms along tubes made from nickel,cobalt,and copper.The source of O atoms was a surfatron-type microwave plasma.The initial density of O atoms depended on the gas flow and was 0.7×10^(21)m^(-3),2.4×10^(21)m^(-3),and 4.2×10^(21)m^(-3)at the flow rates of 50,300,and 600 sccm,and pressures of 10,35,and 60 Pa,respectively.The gas temperature remained at room temperature throughout the experiments.The dissociation fraction decreased exponentially along the length of the tubes in all cases.The penetration depths for well-oxidized nickel were 1.2,1.7,and 2.4 cm,respectively.For cobalt,they were slightly lower at 1.0,1.3,and 1.6 cm,respectively,while for copper,they were 1.1,1.3,and 1.7 cm,respectively.The results were explained by gas dynamics and heterogeneous surface association.These data are useful in any attempt to estimate the loss of molecular fragments along tubes,which serve as catalysts for the association of various radicals to stable molecules. 展开更多
关键词 oxygen plasma penetration depth CATALYSIS heterogeneous surface recombination atom loss
下载PDF
Error field penetration in J-TEXT tokamak based on two-fluid drift-MHD model
6
作者 王文 徐涛 +1 位作者 张仪 the J-TEXT team 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期545-551,共7页
An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and pr... An externally generated resonant magnetic perturbation can induce complex non-ideal MHD responses in their resonant surfaces.We have studied the plasma responses using Fitzpatrick's improved two-fluid model and program LAYER.We calculated the error field penetration threshold for J-TEXT.In addition,we find that the island width increases slightly as the error field amplitude increases when the error field amplitude is below the critical penetration value.However,the island width suddenly jumps to a large value because the shielding effect of the plasma against the error field disappears after the penetration.By scanning the natural mode frequency,we find that the shielding effect of the plasma decreases as the natural mode frequency decreases.Finally,we obtain the m/n=2/1 penetration threshold scaling on density and temperature. 展开更多
关键词 plasma responses drift-MHD model error field penetration
下载PDF
Machine learning optimization strategy of shaped charge liner structure based on jet penetration efficiency
7
作者 Ziqi Zhao Tong Li +6 位作者 Donglin Sheng Jian Chen Amin Yan Yan Chen Haiying Wang Xiaowei Chen Lanhong Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期23-41,共19页
Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate... Shaped charge liner(SCL)has been extensively applied in oil recovery and defense industries.Achieving superior penetration capability through optimizing SCL structures presents a substantial challenge due to intricate rate-dependent processes involving detonation-driven liner collapse,high-speed jet stretching,and penetration.This study introduces an innovative optimization strategy for SCL structures that employs jet penetration efficiency as the primary objective function.The strategy combines experimentally validated finite element method with machine learning(FEM-ML).We propose a novel jet penetration efficiency index derived from enhanced cutoff velocity and shape characteristics of the jet via machine learning.This index effectively evaluates the jet penetration performance.Furthermore,a multi-model fusion based on a machine learning optimization method,called XGBOOST-MFO,is put forward to optimize SCL structure over a large input space.The strategy's feasibility is demonstrated through the optimization of copper SCL implemented via the FEM-ML strategy.Finally,this strategy is extended to optimize the structure of the recently emerging CrMnFeCoNi high-entropy alloy conical liners and hemispherical copper liners.Therefore,the strategy can provide helpful guidance for the engineering design of SCL. 展开更多
关键词 Jet penetration efficiency Shaped charge liner FEM-ML XGBOOST MFO High-entropy alloy
下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
8
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 Data-driven dimensional analysis penetration Semi-infinite metal target Dimensionless numbers Feature selection
下载PDF
Physics-data coupling-driven method to predict the penetration depth into concrete targets
9
作者 Shuai Qin Hao Liu +2 位作者 Jianhui Wang Qiang Zhao Lei Zhang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期184-192,共9页
The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.Ho... The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.However,due to poor quality of experimental data,the traditional machine learning(ML)methods,whichare driven only by experimental data,have poor generalization capabilities and limited prediction accuracy.Therefore,this study intends to exhibit a ML method fusing the prior knowledge with experiment data.The newML method can constrain the fitting to experimental data,improve the generalization ability and the predic-tion accuracy.Experimental results show that integrating domain prior knowledge can effectively improve theperformance of the prediction model for penetration depth into concrete targets. 展开更多
关键词 penetration into concrete Artificial neural networks Prior knowledge fusion Prediction model
下载PDF
Mechanism of acupoint penetration acupuncture therapy regulating chondrocyte autophagy via the PI3K/Akt-mTOR pathway in KOA rats
10
作者 Yang Gao Qingbo Wang +6 位作者 Songwei Li Xiaojing Shi Shan Dai Jingjing Yu Qingpan Zhao Yang Wang Youlong Zhou 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第3期363-375,共13页
Objective:To investigate whether acupoint penetration acupuncture(APA)could regulate chondrocyte autophagy and apoptosis via the PI3K/Akt-mTOR signaling pathway to reduce cartilage degeneration in knee osteoarthritis(... Objective:To investigate whether acupoint penetration acupuncture(APA)could regulate chondrocyte autophagy and apoptosis via the PI3K/Akt-mTOR signaling pathway to reduce cartilage degeneration in knee osteoarthritis(KOA)rats.Methods: KOA was induced in rats via intra-articular injection of sodium iodoacetate resolution.Forty male Sprague-Dawley rats were randomly assigned to blank control,model,APA,electro-acupuncture(EA),and sham model groups(n=8)and those in the APA and EA groups received their respective therapies.Following completion of the treatment course,histological examinations of cartilage and muscle were conducted.Levels of apoptosis-and autophagy-related factors,including Bax,Bcl-2,mTOR,ULK-1,and Beclin-1 protein,and mRNAs were assessed.Additionally,β-endorphin(β-EP)concentrations in the brain and serum were measured.Results: Histological analysis revealed that APA alleviated cartilage and muscle damage compared with the model group.APA inhibited cartilage degeneration by modulating the expression of apoptosis-and autophagy-related proteins and mRNA,thus preventing chondrocyte apoptosis.In the APA group,Bax and mTOR protein levels were significantly lower than those in the model group(both P=.024).Conversely,the Bcl-2 expression level was significantly higher than that in the EA group(P=.035).Additionally,ULK-1 expression was significantly lower than that in the EA group(P=.045).The mRNA level of Bax was significantly higher than that in the blank control group(P<.001).However,Beclin-1 levels were significantly higher than those in both the model and EA groups(both P<.001).ELISA results showed a significant decrease in the concentration ofβ-EP in the brains of the rats in the APA group compared with those in the model group(P=.032).Conclusions: APA reduced osteoarthritis-related pain and alleviated cartilage damage by upregulating chondrocyte autophagy and down-regulating apoptosis via signaling pathways involving PI3K/Akt-mTOR in KOA rats. 展开更多
关键词 Acupoint penetration acupuncture Knee osteoarthritis CHONDROCYTE AUTOPHAGY Apoptosis Cell proliferation
下载PDF
Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances
11
作者 Lan Lu Yuting Zhao +4 位作者 Mingxing Li Xiaobo Wang Jie Zhu Li Liao Jingya Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期506-524,共19页
Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing pr... Extracellular polymeric substances(EPS)constitutes crucial elements within bacterial biofilms,facili-tating accelerated antimicrobial resistance and conferring defense against the host's immune cells.Developing precise and effective antibiofilm approaches and strategies,tailored to the specific charac-teristics of EPS composition,can offer valuable insights for the creation of novel antimicrobial drugs.This,in turn,holds the potential to mitigate the alarming issue of bacterial drug resistance.Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias,which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds.Considering the pivotal role of EPS in biofilm functionality,it is imperative for EPS research to delve deeper into the analysis of intricate compositions,moving beyond the current focus on polymeric materials.This ne-cessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches.In this study,we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions.Additionally,novel strategies aimed at targeting EPS to enhance biofilm penetration were explored,with a specific focus on high-lighting the limitations associated with colorimetric methods.Furthermore,we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges.This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS,thereby inhibiting biofilm formation.This insight opens up a new avenue for exploration within this research domain. 展开更多
关键词 Analytic strategies and approaches Composition characterization Extracellular polymeric substances(EPS) Promoting biofilm penetration
下载PDF
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
12
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 penetration fuze Temporal convolutional network(TCN) Long short-term memory(LSTM) Layer counting Multi-source fusion
下载PDF
Interpretation and characterization of rate of penetration intelligent prediction model
13
作者 Zhi-Jun Pei Xian-Zhi Song +3 位作者 Hai-Tao Wang Yi-Qi Shi Shou-Ceng Tian Gen-Sheng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期582-596,共15页
Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations... Accurate prediction of the rate of penetration(ROP)is significant for drilling optimization.While the intelligent ROP prediction model based on fully connected neural networks(FNN)outperforms traditional ROP equations and machine learning algorithms,its lack of interpretability undermines its credibility.This study proposes a novel interpretation and characterization method for the FNN ROP prediction model using the Rectified Linear Unit(ReLU)activation function.By leveraging the derivative of the ReLU function,the FNN function calculation process is transformed into vector operations.The FNN model is linearly characterized through further simplification,enabling its interpretation and analysis.The proposed method is applied in ROP prediction scenarios using drilling data from three vertical wells in the Tarim Oilfield.The results demonstrate that the FNN ROP prediction model with ReLU as the activation function performs exceptionally well.The relative activation frequency curve of hidden layer neurons aids in analyzing the overfitting of the FNN ROP model and determining drilling data similarity.In the well sections with similar drilling data,averaging the weight parameters enables linear characterization of the FNN ROP prediction model,leading to the establishment of a corresponding linear representation equation.Furthermore,the quantitative analysis of each feature's influence on ROP facilitates the proposal of drilling parameter optimization schemes for the current well section.The established linear characterization equation exhibits high precision,strong stability,and adaptability through the application and validation across multiple well sections. 展开更多
关键词 Fully connected neural network Explainable artificial intelligence Rate of penetration ReLU active function Deep learning Machine learning
下载PDF
Association between intercellular adhesion molecule-1 to depression and blood-brain barrier penetration in cerebellar vascular disease
14
作者 Ju-Luo Chen Rui Wang +2 位作者 Pei-Qi Ma You-Meng Wang Qi-Qiang Tang 《World Journal of Psychiatry》 SCIE 2024年第11期1661-1670,共10页
BACKGROUND Cerebral small vessel disease(CSVD)is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease.A clear understanding of the underlying causes of CSVD rema... BACKGROUND Cerebral small vessel disease(CSVD)is a prevalent cerebrovascular disease in clinical practice that is often associated with macrovascular disease.A clear understanding of the underlying causes of CSVD remains elusive.AIM To explore the association between intercellular adhesion molecule-1(ICAM-1)and blood-brain barrier(BBB)penetration in CSVD.METHODS This study included patients admitted to Fuyang People’s Hospital and Fuyang Community(Anhui,China)between December 2021 and March 2022.The study population comprised 142 patients,including 80 in the CSVD group and 62 in the control group.Depression was present in 53 out of 80 patients with CSVD.Multisequence magnetic resonance imaging(MRI)and dynamic contrast-enhanced MRI were applied in patients to determine the brain volume,cortical thickness,and cortical area of each brain region.Moreover,neuropsychological tests including the Hamilton depression scale,mini-mental state examination,and Montreal cognitive assessment basic scores were performed.RESULTS The multivariable analysis showed that age[P=0.011;odds ratio(OR)=0.930,95%confidence interval(CI):0.880-0.983]and ICAM-1 levels(P=0.023;OR=1.007,95%CI:1.001-1.013)were associated with CSVD.Two regions of interest(ROIs;ROI3 and ROI4)in the white matter showed significant(both P<0.001;95%CI:0.419-0.837 and 0.366-0.878)differences between the two groups,whereas only ROI1 in the gray matter showed signi-ficant difference(P=0.046;95%CI:0.007-0.680)between the two groups.ICAM-1 was significantly correlated(all P<0.05)with cortical thickness in multiple brain regions in the CSVD group.CONCLUSION This study revealed that ICAM-1 levels were independently associated with CSVD.ICAM-1 may be associated with cortical thickness in the brain,predominantly in the white matter,and a significant increase in BBB permeability,proposing the involvement of ICAM-1 in BBB destruction. 展开更多
关键词 Cerebral small vessel disease Intercellular adhesion molecule-1 Blood-brain barrier penetration Cortical thickness White matter
下载PDF
On the Role of Chemical Potential in Determining the Temperature Dependent Critical Magnetic Field and the Penetration Depth of Superconductors
15
作者 Gulshan Prakash Malik Vijaya Shankar Varma 《World Journal of Condensed Matter Physics》 CAS 2024年第4期96-106,共11页
Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their... Dealing with both elemental and high-Tc superconductors (SCs) - Sn, Nb and Pb belonging to the former category, and MgB2 and different samples of YBCO to the latter - we show that the difference in the values of their critical magnetic field Hc1,c2 and the penetration depth λL(0) is, remarkably, attributable predominantly to the difference in the values of a single parameter, viz., the chemical potential (μ) close to their critical temperatures (Tcs). Based directly on the dynamics of pairing in a magnetic field and the corresponding number equation, our approach relates Hc1,c2 of an SC with the following set of its properties: S1 = {μ, Tc, Debye temperature, effective mass of the electron, magnetic interaction parameter, Landau index}. Hence, it provides an alternative to the approach followed by Talantsev [Mod. Phys. Lett. B 33, 1950195 (2019)] who has shown by ingeniously combining the results of various well-established theories that Hc2 of an SC can be calculated via four different equations, each of which invokes two or more properties from its sample-specific set S2 = {Tc, gap, coherence length, λL(0), jump in sp. ht.}, which is radically different from S1. 展开更多
关键词 Pairing and Number Equations Incorporating Temperature Chemical Potential and Magnetic Field Critical Magnetic Field penetration Depth Sn Nb Pb MGB2 YBCO
下载PDF
Enhancing Mobile Security through Comprehensive Penetration Testing
16
作者 Maryam Roshanaei 《Journal of Information Security》 2024年第2期63-86,共24页
In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield w... In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield within the realm of cybersecurity, plays a vital role in safeguarding mobile ecosystems against the ever-evolving landscape of threats. The ubiquity of mobile devices has made them a prime target for cybercriminals, and the data and functionality accessed through mobile applications make them valuable assets to protect. Mobile penetration testing is designed to identify vulnerabilities, weaknesses, and potential exploits within mobile applications and the devices themselves. Unlike traditional penetration testing, which often focuses on network and server security, mobile penetration testing zeroes in on the unique challenges posed by mobile platforms. Mobile penetration testing, a specialized field within cybersecurity, is an essential tool in the Cybersecurity specialists’ toolkit to protect mobile ecosystems from emerging threats. This article introduces mobile penetration testing, emphasizing its significance, including comprehensive learning labs for Android and iOS platforms, and highlighting how it distinctly differs from traditional penetration testing methodologies. 展开更多
关键词 Mobile penetration Testing CYBERSECURITY Mobile Security Vulnerability Assessment
下载PDF
STUDY ON EFP PENETRATION SIMULATION LAW 被引量:2
17
作者 曹兵 陈惠武 明晓 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第1期31-35,共5页
This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the si... This paper analyses the geometrical analogue rules of explosively formed projectile (EFP) penetrating armours with the help of similarity theory, and establishes EFP penetrating armour simulation law. Based on the simulation law established here, prototype experiments and model experiments with the simulation ratio of 1.33 are designed, and the penetrating armour experiments with 45 # carbon steel plates are separately conducted. By means of data processing of experimental results, it is concluded that EFP penetrating armour simulation law established is tenable. 展开更多
关键词 shaped charge armour piercing test simulated test penetration simulation law explosively formed projectile
下载PDF
IMPACTS OF PENETRATION THERAPY WITH HEAD ELECTRICAL ACUPUNCTURE ON PROLIFERATION OF NEURAL STEM CELLS IN SUBSTANTIA NIGRA OF RAT MODEL OF PARKINSON'S DISEASE 被引量:2
18
作者 王顺 戚秀杰 韩迪 《World Journal of Acupuncture-Moxibustion》 2008年第4期23-31,共9页
Objective To probe into the function mechanism of penetration therapy with head electrical acupuncture on Parkinson's disease. Methods Microinjection of 6-hydroxydopamin (6-OHDA) on the left cor- pus striatum was a... Objective To probe into the function mechanism of penetration therapy with head electrical acupuncture on Parkinson's disease. Methods Microinjection of 6-hydroxydopamin (6-OHDA) on the left cor- pus striatum was adopted to prepare rotation model of Parkinson^s disease in rat. Penetration therapy with head electrical acupuncture was administered in treatment. Normal group, sham-operation group, model group and penetration therapy group were set up. (1)lmmunohistochemical (IHC) method was used to test the morphology and count of positive cell of tyrosine hydroxylase (TH). (2)RT-PCR technology was used to detect the expression of nestin mRNA of neural stem cell (NSC). Results (1)Compared with model group, in pene- tration therapy group, the expressions of TH-positive neurons in immune response were increased in areal density (AD), numerical density (ND) and integrating optic density (P〈0.05). (2)Compared with model group, in penetration therapy group, the expression of nestin mRNA was increased (P〈0. 05). Conclusion Penetration therapy with head electrical acupuncture promotes the proliferation of endogenous neural stem cells in substantia nigra of rat model of Parkinson's disease. 展开更多
关键词 penetration therapy with head electrical acupuncture Parkinson's disease DA neuron
下载PDF
The Effects of Some Penetration Enhancers on the Transdermal Iontophoretic Delivery of Insulin in Vitro *
19
作者 郝劲松 李大为 +1 位作者 李守峰 郑俊民 《Journal of Chinese Pharmaceutical Sciences》 CAS 1996年第2期88-92,共5页
The effects of some commonly used penetration enhancers such as laurocapram (AZ), oleic acid (OA), poloxamer (POL) and propylene glycol (PG) on the in vitro transdermal iontophoretic delivery of insulin through fu... The effects of some commonly used penetration enhancers such as laurocapram (AZ), oleic acid (OA), poloxamer (POL) and propylene glycol (PG) on the in vitro transdermal iontophoretic delivery of insulin through full-thickness mouse skin were investigated. The results showed that AZ had a synergistic effect on iontophoretic ability to enhance skin permeation of insulin, and PG could further increase this effect. 5% AZ / PG increased the iontophoretic steady state flux of insulin by a factor of 2.75 compared to that treated with iontophoresis alone. OA did not further enhance iontophoretic effect to increase skin permeation of insulin. The combination of iontophoresis and some enhancer provided a novel idea and possibility for transdermal delivery of insulin. 展开更多
关键词 IONTOPHORESIS penetration enhancer INSULIN
下载PDF
Negative effect improvement of accelerated curing on chloride penetration resistance of ordinary concrete
20
作者 李果 董雷 +1 位作者 王丹 颜成华 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期79-85,共7页
Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial stre... Four mineral admixture concrete specimens werefabricated to study the negative effect improvements ofaccelerated curing on the chloride penetration resistance ofordinary concrete. After reaching different initial strengths, the specimens were placed in 40, 60, or 80 t water tanks foraccelerated curing. The Coulomb values of the specimens weemeasured with ASTM C1202 experiment at 28, 100, 200, ad300 d. Partial specimens were also selected for rapid chlorideion migration coefficient and mercury intrusion porosimetryexperiments. The experimental results show that theaccelerated curing for ordinary concrete linealy deterioratesthe chloride penetration resistance, whereas the incorporationof mineral admixtures improves the concrete microscopic pore-structures and negative effects. An upper temperature limit of60 t of the accelerated curing is suitable for obtainingsuperior chloride penetration resistance for the mineraladmixture concrete. Pre-curing at a normal temperature of 20t is beneficial for improving the negative effect, which isalso aieviated with increasing testing age as a result of thesuccessive hydration of binder materials in concrete. 展开更多
关键词 negative effect improvement chloride penetration resistance ordinay concrete accelerated curing
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部