Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into...Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into pQE30 vector following PCR amplification from genomic DNA. E. coli M15 transformants were induced to express the fusion protein by IPTG and the product was identified by SDS-PAGE and Western blot. Results: Confirmed by enzyme cleavage analysis and DNA sequencing, a correct recombinant plasmid pQE30/omp2 was constructed. The fusion protein from the transformants was approximately 60 kDa in size in SDS-PAGE analysis, which could specially react with anti-6 X His mouse monoclonal IgG antibodies. Conclusion: We successfully expressed Omp2 in E. coli M15, providing an efficient and simple system for assaying the immunological properties of Omp2.展开更多
AIM: To screen the immunogenic membrane proteins of Shigella Aexneri 2a 2457T. METHODS: The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogeni...AIM: To screen the immunogenic membrane proteins of Shigella Aexneri 2a 2457T. METHODS: The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogenic proteins of S. Aexneri 2a 2457T. Serum was gained from rabbits immunized with the same bacteria. Immunogenic spots were cut out from the polyacrylamide gel and digested by trypsin in-gel. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) was performed to determine the molecular weight of peptides. Electrospray ionization (ESI-MS/MS) was performed to determine the sequences of the interesting peptides. RESULTS: A total of 20 spots were successfully identified from Coomassie brilliant blue stained gels representing 13 protein entries, 5 known antigens and 8 novel antigens. A hypothetical protein (YaeT) was detected, which might be a candidate target of vaccine. CONCLUSION: Membrane proteins of S. flexneri 2a 2457T were successfully observed by 2-DE. Several known and novel antigens were identified by mass spectrum.展开更多
ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investiga...ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV associated malignancies. MethodsMature DC were transfected with EBV LMP2A recombinant vaccinia virus (rVV LMP2A). Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR). ResultsLMP2A protein was highly expressed (66.1 %) in DC after the transfection of rVV LMP2A. No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection. Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells. ConclusionRecombinant vaccinia virus was an effective and non perturbing vector to mediate the transfection of LMP2A into DC. The functions of mature DC were not affected significantly by the transfection of Vac LMP2A. This study could provide evidence for the further immunotherapy of EBV associated malignancies,e.g. nasopharyngeal carcinoma (NPC).展开更多
Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Tes...Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Testis, epididymis, and vas deferens were collected on days 1-70 to examine Itm2b expression during sexual maturation. To further examine the regulation of Itm2b, adult rats underwent surgical castration and cryptorchidism. Ethylene dimethane sulfonate and busulfan treatments were carried out to test the regulation of Itm2b after destruction of Leydig cells and germ cells. Results: In testis, Itm2b expression was moderately detected in the adluminal area of seminiferous cords on days 1-10, and detected at a low level in the spermatogonia on days 20 and 30. The Itm2b level was markedly increased in Leydig cells from day 20 to day 70. In epididymis and vas deferens, Itm2b was detected from neonate to adults, and the signal gradually increased in accordance with sexual maturation. Itm2b expression was significantly downregulated in epididymis and vas deferens of castrated rats, and strongly stimulated when castrated rats were treated with testosterone. Cryptorchidism led to a significant decline of Itm2b expression in testis and caput epididymis. Itm2b expression in epididymis and vas deferens was significantly decreased after the Leydig ceils were destroyed by ethylene dimethane sulfonate. Busulfan treatment produced no obvious change in Itm2b expression in epididymis or vas deferens. Conelusion: Our data suggested that Itm2b expression is upregulated by testosterone and might play a role in rat male reproduction.展开更多
AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (D...AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.展开更多
Objective To identify the sperm membrane proteins that are associated with antisperm antibody Methods Using antisperm antibody positive serum through unidimensional polyacrylamide gel electrophoresis and 2-dimensi...Objective To identify the sperm membrane proteins that are associated with antisperm antibody Methods Using antisperm antibody positive serum through unidimensional polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis followed by Western blot analysis to determine the molecular weights (MW) and isoelectric points (pI) of sperm membrane proteins that are associated with antisperm antibody. Results Eight kinds of MW with more than ten sperm membrane proteins can be recognized by antisperm antibody positive serum, of which the MWs and pI were 23 kD, 31 kD, 32 kD, 34 kD, 41 kD, 51 kD, 60 kD, 78 kD and 5.3, 5.5,5.7, 5.0, 5.3, 5.8, 6.0, 5.5~6.2, 4.6,5.1,5.5~5.8 respectively. The identification ratios of the sperm membrane proteins on 78 kD (60.7%), 60 kD (71.4%), 51 kD (14.9%) and 23 kD (14.29%) were higher. Conclusion The sperm membrane proteins with MW of 78 kD, 60 kD, 51 kD and 23 kD were associated with antisperm antibody and immunological infertility. Two- dimensional gel electrophoresis and Western blotting can precisely identify the sperm membrane proteins that are associated with antisperm antibody.展开更多
Objective: Bioabsorbable barrier membranes placed over alveolar ridge bone defects are routinely used in dental surgery to promote bone formation. Combining these osteoconductive membranes with osteoinductive Bone Mor...Objective: Bioabsorbable barrier membranes placed over alveolar ridge bone defects are routinely used in dental surgery to promote bone formation. Combining these osteoconductive membranes with osteoinductive Bone Morphogenetic Proteins could prove useful in long bone fracture treatment. The hypothesis was tested in a clinically relevant model of compromised healing. Methods: Four groups of 8 rabbits underwent unilateral mid-tibial osteotomy, excision of periosteum and endosteum, and plate fixation. One group had rhBMP-2 deposited between the bone ends and Membrane wrapped around the osteotomy, the second group had Membrane wrapped around the osteotomy, the third group had rhBMP-2 placed between the bone ends, and the fourth group received no additional treatment. Results: After 7 weeks, callus size and blood flow were significantly higher in the Membrane+rhBMP-2 group than in the rhBMP-2 treated group, but torsion to failure test showed no significant difference. Membrane treatment and no treatment led to non-union. Conclusion: Absorbable barrier membrane combined with rhBMP-2 enhances bone formation, but has no advantage to rhBMP-2 alone. Membrane alone wrapped around the osteotomy was unable to prevent non-union formation.展开更多
Colorectal cancer (CRC) is an important health issue in Taiwan. There were over ten thousand newly diagnosed CRC patients each year. The outcome of late stage CRC still remains to be improved, and tumor markers are ex...Colorectal cancer (CRC) is an important health issue in Taiwan. There were over ten thousand newly diagnosed CRC patients each year. The outcome of late stage CRC still remains to be improved, and tumor markers are expected to improve CRC detection and management. From a colorectal cancer cell secretome database, we chose four proteins as candidates for clinical verification, including tumor-associated calcium signal transducer 2 (TROP2, TACSTD2), transmembrane 9 superfamily member 2 (TM9SF2), and tetraspanin-6 (TSPAN6), and tumor necrosis factor receptor superfamily member 16 (NGFR). Different groups of 30 CRC patients’ tissue samples collected from Chang Gung Memorial Hospital were analyzed by immunohistochemistry (IHC) for the four proteins, and the results were scored by pathologist. For all the four candidate proteins, marked differences of IHC score existed between tumor and adjacent non-tumor counterpart. However, there were only trends between higher protein expression levels and worse outcome. Three proteins (TROP2, TM9SF2 and NGFR) had trends between higher tissue expression and tumor stage or lymph node metastasis. Our study revealed that tissue expression of four proteins (TROP2, TM9SF2, TSPAN6, and NGFR) was markedly different between tumor and adjacent non-tumor counterparts. Overexpression of all these four proteins showed some trends with poorer survival.展开更多
Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific a...Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific actuator to initiate degradation of targeted proteins in the proteasome or lysosome.Herein,we report an artificial tractor that can induce endocytosis-mediated protein depletion without hijacking a proteolysis-specific actuator.In this design,bispecific aptamer chimeras(BSACs)are established,which can bridge human epidermal growth factor receptor 2(ErbB-2),an important biomarker in a common important biomarker in cancer,with membrane proteins of interest.Taking advantage of the property of aptamer-induced endocytosis and digestion of ErbB-2,another membrane protein is translocated into the lysosome in a hitchhike-like manner,resulting in lysosomal proteolysis along with ErbB-2.This strategy frees the TPD from the fundamental limitation of proteolysis-specific actuator and allows simultaneous regulation of the quantity and function of two oncogenic receptors in a cell-type-specific manner,expanding the application scope of TPD-based therapeutics.展开更多
The endoplasmic reticulum(ER)membrane protein complex(EMC)is responsible for monitoring the biogenesis and synthetic quality of membrane proteins with tail-anchored or multiple transmembrane domains.The EMC subunit EM...The endoplasmic reticulum(ER)membrane protein complex(EMC)is responsible for monitoring the biogenesis and synthetic quality of membrane proteins with tail-anchored or multiple transmembrane domains.The EMC subunit EMC6 is one of the core members of EMC and forms an enclosed hydrophilic vestibule in cooperation with EMC3.Despite studies demonstrating that deletion of EMC3 led to rhodopsin mislocalization in rod photoreceptors of mice,the precise mechanism leading to the failure of rhodopsin trafficking remains unclear.Here,we generated the first rod photoreceptor-specific knockout of Emc6(RKO)and cone photoreceptor-specific knockout of Emc6(CKO)mouse models.Deficiency of Emc6 in rod photoreceptors led to progressive shortening of outer segments(OS),impaired visual function,mislocalization and reduced expression of rhodopsin,and increased gliosis in rod photoreceptors.In addition,CKO mice displayed the progressive death of cone photoreceptors and abnormal localization of cone opsin protein.Subsequently,proteomics analysis of the RKO mouse retina illustrated that several cilium-related proteins,particularly anoctamin-2(ANO2)and transmembrane protein 67(TMEM67),were significantly down-regulated prior to OS degeneration.Detrimental rod photoreceptor cilia and mislocalized membrane disc proteins were evident in RKO mice.Our data revealed that in addition to monitoring the synthesis of rhodopsin-dominated membrane disc proteins,EMC6 also impacted rod photoreceptors'ciliogenesis by regulating the synthesis of membrane proteins associated with cilia,contributing to the mislocalization of membrane disc proteins.展开更多
Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role...Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.展开更多
There is evidence showing that increased levels of oxidative stress and C-reactive protein (CRP) might be associated with obesity, hypertension, atherosclerosis and other cardiovascular diseases. This study was undert...There is evidence showing that increased levels of oxidative stress and C-reactive protein (CRP) might be associated with obesity, hypertension, atherosclerosis and other cardiovascular diseases. This study was undertaken to investigate possible relationships among plasma 8-iso-prostaglandin F2α (8-iso-PG F2α: an index of oxidative stress), high-sensitivity (hs)-CRP and membrane fluidity (a reciprocal value of microviscosity) in hypertensive and normotensive men using an electron spin resonance (ESR)-method. The order parameter (S) for the spin-label agents (5-nitroxide stearate) of red blood cell (RBC) membranes in the ESR spectra was significantly higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertensive men. Both plasma 8-iso-PG F2α and hs-CRP levels were significantly increased in hypertensive men compared with normotensive men. In addition, plasma plasma 8-iso-PG F2α levels were correlated with plasma hs-CRP levels. In contrast, plasma nitric oxide (NO)-metabolites were lower in hypertensive men than in normotensive men, and inversely correlated with plasma 8-iso-PG F2α and hs-CRP. The order parameter(S) of RBCs was correlated with plasma 8-iso-PG F2α and plasma hs-CRP, and inversely correlated with plasma NO-metabolites, suggesting that reduced membrane fluidity of RBCs might be associated with increased oxidative stress, inflammation and endothelial dysfunction. Multivariate regression analysis also showed that, after adjusting for general risk factors, both plasma 8-iso-PG F2α and hs-CRP were significant determinants of membrane fluidity of RBCs. The ESR suggests that associations of oxidative stress and inflammation might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory dysfunction in hypertensive men.展开更多
Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that ne...Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that neural inflammation plays a vital role in CNS trauma.As the initial enzyme in neuroinflammation,cytosolic phospholipase A_(2)(cPLA2)can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids andω3-polyunsaturated fatty acid dominated by arachidonic acid,thereby inducing secondary injuries.Although there is substantial fresh knowledge pertaining to cPLA2,in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to amelio rate the clinical res ults after CNS trauma are still insufficient.The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma,highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically,neuroinflammation,lysosome membrane functions,and autophagy activity,that damage the CNS after trauma.Moreover,we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway,and we explored how those agents might be utilized as treatments to improve the results following CNS trauma.This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.展开更多
基金This work was supported in part by grants from the Department of Science and Technology of Hunan Province (No. 01SSY2008-6) the Department of Health of Hunan Province (No. B2003-078).
文摘Objective: To construct a recombinant plasmid containing the outer membrane protein 2 (Omp2) gene of Chlamydia trachomatis and express Omp2 in E.coli. Methods: The omp2 gene of C. trachomatis serovar D was cloned into pQE30 vector following PCR amplification from genomic DNA. E. coli M15 transformants were induced to express the fusion protein by IPTG and the product was identified by SDS-PAGE and Western blot. Results: Confirmed by enzyme cleavage analysis and DNA sequencing, a correct recombinant plasmid pQE30/omp2 was constructed. The fusion protein from the transformants was approximately 60 kDa in size in SDS-PAGE analysis, which could specially react with anti-6 X His mouse monoclonal IgG antibodies. Conclusion: We successfully expressed Omp2 in E. coli M15, providing an efficient and simple system for assaying the immunological properties of Omp2.
基金Supported by the Capital "248" Key Innovation Project, No. H010210360119, State Basic Research Development Program of China No. 973 Program, G1999054103 and 2005CB22904 and National Natural Science Foundation of China No. 30470101
文摘AIM: To screen the immunogenic membrane proteins of Shigella Aexneri 2a 2457T. METHODS: The routine two-dimensional polyacrylamide gel electrophoresis (2-DE) and Western blotting were combined to screen immunogenic proteins of S. Aexneri 2a 2457T. Serum was gained from rabbits immunized with the same bacteria. Immunogenic spots were cut out from the polyacrylamide gel and digested by trypsin in-gel. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS) was performed to determine the molecular weight of peptides. Electrospray ionization (ESI-MS/MS) was performed to determine the sequences of the interesting peptides. RESULTS: A total of 20 spots were successfully identified from Coomassie brilliant blue stained gels representing 13 protein entries, 5 known antigens and 8 novel antigens. A hypothetical protein (YaeT) was detected, which might be a candidate target of vaccine. CONCLUSION: Membrane proteins of S. flexneri 2a 2457T were successfully observed by 2-DE. Several known and novel antigens were identified by mass spectrum.
基金This paper is supported by grant from the National Natural Science Foundation of China(No.30 1 70 880 )
文摘ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV associated malignancies. MethodsMature DC were transfected with EBV LMP2A recombinant vaccinia virus (rVV LMP2A). Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR). ResultsLMP2A protein was highly expressed (66.1 %) in DC after the transfection of rVV LMP2A. No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection. Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells. ConclusionRecombinant vaccinia virus was an effective and non perturbing vector to mediate the transfection of LMP2A into DC. The functions of mature DC were not affected significantly by the transfection of Vac LMP2A. This study could provide evidence for the further immunotherapy of EBV associated malignancies,e.g. nasopharyngeal carcinoma (NPC).
基金Acknowledgment This work was supported by grants from National Basic Research Program of China (No. 2006CB504005 and No. 2006CB944009) and National Natural Science Foundation of China (No. 30330060 and No. 30570198).
文摘Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Testis, epididymis, and vas deferens were collected on days 1-70 to examine Itm2b expression during sexual maturation. To further examine the regulation of Itm2b, adult rats underwent surgical castration and cryptorchidism. Ethylene dimethane sulfonate and busulfan treatments were carried out to test the regulation of Itm2b after destruction of Leydig cells and germ cells. Results: In testis, Itm2b expression was moderately detected in the adluminal area of seminiferous cords on days 1-10, and detected at a low level in the spermatogonia on days 20 and 30. The Itm2b level was markedly increased in Leydig cells from day 20 to day 70. In epididymis and vas deferens, Itm2b was detected from neonate to adults, and the signal gradually increased in accordance with sexual maturation. Itm2b expression was significantly downregulated in epididymis and vas deferens of castrated rats, and strongly stimulated when castrated rats were treated with testosterone. Cryptorchidism led to a significant decline of Itm2b expression in testis and caput epididymis. Itm2b expression in epididymis and vas deferens was significantly decreased after the Leydig ceils were destroyed by ethylene dimethane sulfonate. Busulfan treatment produced no obvious change in Itm2b expression in epididymis or vas deferens. Conelusion: Our data suggested that Itm2b expression is upregulated by testosterone and might play a role in rat male reproduction.
基金National Natural Science Foundation of China,No.39770300,30070873the Overseas Chinese Affairs Office of the State Council Foundation,No.98-33
文摘AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells.
文摘Objective To identify the sperm membrane proteins that are associated with antisperm antibody Methods Using antisperm antibody positive serum through unidimensional polyacrylamide gel electrophoresis and 2-dimensional gel electrophoresis followed by Western blot analysis to determine the molecular weights (MW) and isoelectric points (pI) of sperm membrane proteins that are associated with antisperm antibody. Results Eight kinds of MW with more than ten sperm membrane proteins can be recognized by antisperm antibody positive serum, of which the MWs and pI were 23 kD, 31 kD, 32 kD, 34 kD, 41 kD, 51 kD, 60 kD, 78 kD and 5.3, 5.5,5.7, 5.0, 5.3, 5.8, 6.0, 5.5~6.2, 4.6,5.1,5.5~5.8 respectively. The identification ratios of the sperm membrane proteins on 78 kD (60.7%), 60 kD (71.4%), 51 kD (14.9%) and 23 kD (14.29%) were higher. Conclusion The sperm membrane proteins with MW of 78 kD, 60 kD, 51 kD and 23 kD were associated with antisperm antibody and immunological infertility. Two- dimensional gel electrophoresis and Western blotting can precisely identify the sperm membrane proteins that are associated with antisperm antibody.
文摘Objective: Bioabsorbable barrier membranes placed over alveolar ridge bone defects are routinely used in dental surgery to promote bone formation. Combining these osteoconductive membranes with osteoinductive Bone Morphogenetic Proteins could prove useful in long bone fracture treatment. The hypothesis was tested in a clinically relevant model of compromised healing. Methods: Four groups of 8 rabbits underwent unilateral mid-tibial osteotomy, excision of periosteum and endosteum, and plate fixation. One group had rhBMP-2 deposited between the bone ends and Membrane wrapped around the osteotomy, the second group had Membrane wrapped around the osteotomy, the third group had rhBMP-2 placed between the bone ends, and the fourth group received no additional treatment. Results: After 7 weeks, callus size and blood flow were significantly higher in the Membrane+rhBMP-2 group than in the rhBMP-2 treated group, but torsion to failure test showed no significant difference. Membrane treatment and no treatment led to non-union. Conclusion: Absorbable barrier membrane combined with rhBMP-2 enhances bone formation, but has no advantage to rhBMP-2 alone. Membrane alone wrapped around the osteotomy was unable to prevent non-union formation.
文摘Colorectal cancer (CRC) is an important health issue in Taiwan. There were over ten thousand newly diagnosed CRC patients each year. The outcome of late stage CRC still remains to be improved, and tumor markers are expected to improve CRC detection and management. From a colorectal cancer cell secretome database, we chose four proteins as candidates for clinical verification, including tumor-associated calcium signal transducer 2 (TROP2, TACSTD2), transmembrane 9 superfamily member 2 (TM9SF2), and tetraspanin-6 (TSPAN6), and tumor necrosis factor receptor superfamily member 16 (NGFR). Different groups of 30 CRC patients’ tissue samples collected from Chang Gung Memorial Hospital were analyzed by immunohistochemistry (IHC) for the four proteins, and the results were scored by pathologist. For all the four candidate proteins, marked differences of IHC score existed between tumor and adjacent non-tumor counterpart. However, there were only trends between higher protein expression levels and worse outcome. Three proteins (TROP2, TM9SF2 and NGFR) had trends between higher tissue expression and tumor stage or lymph node metastasis. Our study revealed that tissue expression of four proteins (TROP2, TM9SF2, TSPAN6, and NGFR) was markedly different between tumor and adjacent non-tumor counterparts. Overexpression of all these four proteins showed some trends with poorer survival.
基金supported in part by the National Natural Science Foundation of China(grant nos.21705010,21735001,22274046,and 91853104)Hunan Provincial Natural Science Foundation of China(grant nos.2022JJ20038 and 2020JJ4409)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(grant no.20B032)Natural Science Foundation of Changsha City(grant no.kq2202189).
文摘Targeted protein degradation(TPD)is an emerging tool for degrading proteins of interest,which affords an attractive modality for cancer therapy.However,the present TPD technologies must engage a proteolysis-specific actuator to initiate degradation of targeted proteins in the proteasome or lysosome.Herein,we report an artificial tractor that can induce endocytosis-mediated protein depletion without hijacking a proteolysis-specific actuator.In this design,bispecific aptamer chimeras(BSACs)are established,which can bridge human epidermal growth factor receptor 2(ErbB-2),an important biomarker in a common important biomarker in cancer,with membrane proteins of interest.Taking advantage of the property of aptamer-induced endocytosis and digestion of ErbB-2,another membrane protein is translocated into the lysosome in a hitchhike-like manner,resulting in lysosomal proteolysis along with ErbB-2.This strategy frees the TPD from the fundamental limitation of proteolysis-specific actuator and allows simultaneous regulation of the quantity and function of two oncogenic receptors in a cell-type-specific manner,expanding the application scope of TPD-based therapeutics.
基金supported by The National Natural Science Foundation of China(No.82121003,81970841,82101160)the program of Science and Technology International Cooperation Project of Qinghai province(China)(No.2022-HZ-814)+2 种基金the CAMS Innovation Fund for Medical Sciences(No.2019-12M-5-032)Sichuan Intellectual Property Office(China)(No.2022-ZS-0070)the Department of Chengdu Science and Technology(Sichuan,China)(No.2021-YF05-01316-SN).
文摘The endoplasmic reticulum(ER)membrane protein complex(EMC)is responsible for monitoring the biogenesis and synthetic quality of membrane proteins with tail-anchored or multiple transmembrane domains.The EMC subunit EMC6 is one of the core members of EMC and forms an enclosed hydrophilic vestibule in cooperation with EMC3.Despite studies demonstrating that deletion of EMC3 led to rhodopsin mislocalization in rod photoreceptors of mice,the precise mechanism leading to the failure of rhodopsin trafficking remains unclear.Here,we generated the first rod photoreceptor-specific knockout of Emc6(RKO)and cone photoreceptor-specific knockout of Emc6(CKO)mouse models.Deficiency of Emc6 in rod photoreceptors led to progressive shortening of outer segments(OS),impaired visual function,mislocalization and reduced expression of rhodopsin,and increased gliosis in rod photoreceptors.In addition,CKO mice displayed the progressive death of cone photoreceptors and abnormal localization of cone opsin protein.Subsequently,proteomics analysis of the RKO mouse retina illustrated that several cilium-related proteins,particularly anoctamin-2(ANO2)and transmembrane protein 67(TMEM67),were significantly down-regulated prior to OS degeneration.Detrimental rod photoreceptor cilia and mislocalized membrane disc proteins were evident in RKO mice.Our data revealed that in addition to monitoring the synthesis of rhodopsin-dominated membrane disc proteins,EMC6 also impacted rod photoreceptors'ciliogenesis by regulating the synthesis of membrane proteins associated with cilia,contributing to the mislocalization of membrane disc proteins.
基金Major State BasicResearch (973) Program of China, (G1999053905).
文摘Trail, a tumor necrosis factor-related apoptosis-inducing ligand, is a novel potent endogenous activator of the cell death pathway through the activation of cell surface death receptors Trail-R1 and Trail-R2. Its role, like FasL in activation-induced cell death (AICD), has been demonstrated in immune system. However the mechanism of Trail induced apoptosis remains unclear. In this report, the recombinant Trail protein was expressed and purified. The apoptosis-inducing activity and the regulation mechanism of recombinant Trail on Jurkat T cells were explored in vitro. Trypan blue exclusion assay demonstrated that the recombinant Trail protein actively killed Jurkat T cells in a dose-dependent manner. Trail-induced apoptosis in Jurkat T cells were remarkably reduced by Bcl-2 over expression in Bcl-2 gene transfected cells. Treatment with PMA (phorbol 12-myristate 13-acetate), a PKC activator, suppressed Trail-induced apoptosis in Jurkat T cells. The inhibition of apoptosis by PMA was abolished by pretreatment with Bis, a PKC inhibitor. Taken together, it was suggested that Bcl-2 over-expression and PMA activated PKC actively down-regulated the Trail-mediated apoptosis in Jurkat T cell.
文摘There is evidence showing that increased levels of oxidative stress and C-reactive protein (CRP) might be associated with obesity, hypertension, atherosclerosis and other cardiovascular diseases. This study was undertaken to investigate possible relationships among plasma 8-iso-prostaglandin F2α (8-iso-PG F2α: an index of oxidative stress), high-sensitivity (hs)-CRP and membrane fluidity (a reciprocal value of microviscosity) in hypertensive and normotensive men using an electron spin resonance (ESR)-method. The order parameter (S) for the spin-label agents (5-nitroxide stearate) of red blood cell (RBC) membranes in the ESR spectra was significantly higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertensive men. Both plasma 8-iso-PG F2α and hs-CRP levels were significantly increased in hypertensive men compared with normotensive men. In addition, plasma plasma 8-iso-PG F2α levels were correlated with plasma hs-CRP levels. In contrast, plasma nitric oxide (NO)-metabolites were lower in hypertensive men than in normotensive men, and inversely correlated with plasma 8-iso-PG F2α and hs-CRP. The order parameter(S) of RBCs was correlated with plasma 8-iso-PG F2α and plasma hs-CRP, and inversely correlated with plasma NO-metabolites, suggesting that reduced membrane fluidity of RBCs might be associated with increased oxidative stress, inflammation and endothelial dysfunction. Multivariate regression analysis also showed that, after adjusting for general risk factors, both plasma 8-iso-PG F2α and hs-CRP were significant determinants of membrane fluidity of RBCs. The ESR suggests that associations of oxidative stress and inflammation might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory dysfunction in hypertensive men.
基金supported by the National Natural Science Foundation of China,No.82072192(to KLZ)Public Welfare Technology Research Project of Zhejiang Province,No.LGF20H150003(to KLZ)+1 种基金the Natural Science Foundation of Zhejiang Province,Nos.LY17H060009 and Y21H060050(both to WFN)Wenzhou Science and Technology Bureau Foundation,No.Y20210438(to KLZ)。
文摘Central nervous system(CNS)trauma,including traumatic brain injury and spinal cord injury,has a high rate of disability and mortality,and effective treatment is currently lacking.Previous studies have revealed that neural inflammation plays a vital role in CNS trauma.As the initial enzyme in neuroinflammation,cytosolic phospholipase A_(2)(cPLA2)can hydrolyze membranous phosphatides at the sn-2 position in a preferential way to release lysophospholipids andω3-polyunsaturated fatty acid dominated by arachidonic acid,thereby inducing secondary injuries.Although there is substantial fresh knowledge pertaining to cPLA2,in-depth comprehension of how cPLA2 participates in CNS trauma and the potential methods to amelio rate the clinical res ults after CNS trauma are still insufficient.The present review summarizes the latest understanding of how cPLA2 participates in CNS trauma,highlighting novel findings pertaining to how cPLA2 activation initiates the potential mechanisms specifically,neuroinflammation,lysosome membrane functions,and autophagy activity,that damage the CNS after trauma.Moreover,we focused on testing a variety of drugs capable of inhibiting cPLA2 or the upstream pathway,and we explored how those agents might be utilized as treatments to improve the results following CNS trauma.This review aimed to effectively understand the mechanism of cPLA2 activation and its role in the pathophysiological processes of CNS trauma and provide clarification and a new referential framework for future research.