BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the W...BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the Wharton's Jelly(WJ) tissue can be used as a source for obtaining vascular smooth muscle cells(VSMCs),while the human umbilical arteries(h UAs) can serve as a scaffold for blood vessel engineering.AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.METHODS WJ-MSCs were isolated and expanded until passage(P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid,followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9,NANOG homeobox, OCT4 and GAPDH, was performed. In addition,immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated h UAs.RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into"osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression(> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, h UAs were isolated and decellularized. Based on histological analysis, decellularized h UAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized h UAs with VSMCs was performed for 3 wk. Decellularized h UAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and s GAG contents in repopulated h UAs with VSMCs. Specifically, total hydroxyproline and s GAG content after the 1 st, 2 nd and 3 rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1μg s GAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups(P<0.05).CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, h UAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.展开更多
Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from periphe...Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from peripheral blood, may offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. Methods: SPCs were isolated from 5-ml fresh rat peripheral blood by density-gradient centrifugation and cultured for 3 weeks in endothelial growth medium-2-MV (EGM-2-MV) medium containing platelet-derived growth factoroBB (PDGF BB). Before seeded on the synthesized scaffold, SPC-derived smooth muscle outgrowth cell (SOC) phenotypes were assessed by immuno-fluorescent staining, Western blot analysis, and reverse transcription polymerase chain reaction (RT-PCR). The cells were seeded onto the silk fibroin-modified poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SF-PHBHHx) scaflblds by 6× 10^4 cells/cm^2 and cultured under the static condition for 3 weeks. The growth and proliferation of the seeded cells on the scaffold were analyzed by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope (SEM), and 4,6-diamidino-2-phenylindole (DAPI) staining. Results: SOCs displayed specific "hill and valley" morphology, expressed the specific markers of the SMC lineage: smooth muscle (SM) a-actin, calponin and smooth muscle myosin heavy chain (SM MHC) at protein and messenger ribonucleic acid (mRNA) levels. RT-PCR results demonstrate that SOCs also expressed smooth muscle protein 22a (SM22a, a contractile protein, and extracellular matrix components elastin and matrix Gla protein (MGP), as well as vascular endothelial growth factor (VEGF). After seeded on the SF-PHBHHx scaffold, the cells showed excellent metabolic activity and proliferation. Conclusion: SPCs isolated from peripheral blood can be differentiated the SMCs in vitro and have an impressive growth potential in the biodegradable synthesized scaffold. Thus, SPCs may be a promising cell sointo urce for constructing TEBVs.展开更多
Vascular smooth muscle cells have attracted considerable interest as a model for a flexible program of gene expression.This cell type arises throughout the embryo body plan via poorly understood signaling cascades tha...Vascular smooth muscle cells have attracted considerable interest as a model for a flexible program of gene expression.This cell type arises throughout the embryo body plan via poorly understood signaling cascades that direct the expression of transcription factors and microRNAs which,in turn,orchestrate the activation of contractile genes collectively defining this cell lineage.The discovery of myocardin and its close association with serum response factor has represented a major break-through for the molecular understanding of vascular smooth muscle cell differentiation.Retinoids have been shown to improve the outcome of vessel wall remodeling following injury and have provided further insights into the molecular circuitry that defines the vascular smooth muscle cell phenotype.This review summarizes the progress to date in each of these areas of vascular smooth muscle cell biology.展开更多
Instruction Shear stress,caused by the parallel frictional drag force of blood flow,is a biomechanical force which plays an important role in the control of blood vessels growth and functions [1]. Clinical researches ...Instruction Shear stress,caused by the parallel frictional drag force of blood flow,is a biomechanical force which plays an important role in the control of blood vessels growth and functions [1]. Clinical researches had found out that atherosclerotic le-展开更多
Background and Objective In-stent restenosis(ISR)remains a major limitation of percutaneous coronary intervention despite improvements in stent design and pharmacological agents,whereas the mechanism of ISR has not be...Background and Objective In-stent restenosis(ISR)remains a major limitation of percutaneous coronary intervention despite improvements in stent design and pharmacological agents,whereas the mechanism of ISR has not been fully clarified.In the present study,we sought to investigate the potential association of serum soluble TREM-1(sTREM-1)levels with the incidence of ISR.The role of TREM-1 was evaluated in cultured vascular smooth muscle cells(VSMCs).展开更多
Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC tran...Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-glucose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)- κ B inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF- κ B inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.展开更多
Objectives To evaluate the impact of stent implantation on proliferation and apop-tosis in injured media vascular smooth muscle cells (VSMC) and to explore the mechanism of restenosis after stent implantation. Methods...Objectives To evaluate the impact of stent implantation on proliferation and apop-tosis in injured media vascular smooth muscle cells (VSMC) and to explore the mechanism of restenosis after stent implantation. Methods Fifty male New Zealand rabbits were randomized into two groups, including balloon group and stent group. Control group was set up. The samples were harvested on 3, 7, 14, 28, 56 days after operation and the following investigation was carried out: (1) Assessing the expression of proliferating cell nuclear antigen (PCNA) of media VSMC by the method of immunohistochemistry; (2) Analyzing apoptosis of media VSMC by DNA agarose gel electrophoresis and TUNEL technique. Results The expression of PCNA and apoptosis in stent and balloon groups were markedly increased compared with control groups. (1) Stent group induced significant increased expression of PCNA in the media VSMC compared with balloon group on 3 to 28 days. On day 7, the positive rates of PCNA were 24. 36±0. 55 % vs 18. 74±1. 09 % ( P < 0. 01 ); (2) From 3 to 28 days, stent group appeared obvious DNA ladder, while balloon group only had little trace ; (3) TUNEL method showed that stent group induced much more significant apoptosis than that of balloon group on 3 to 28 days. The highest rate of apoptosis appeared on day 7: 12. 42 ±1.13% vs 5. 54±0.53% (P<0. 01); (4) By calculating the ratio of the positive rate of PCNA to apoptosis, it showed that on 3 to 28 days, the ratio of balloon group was higher than that of stent group. There was obvious difference between two groups. Conclusions Stent group induces augmented proliferation and much more significant apoptosis of media VSMC than that of balloon group. It makes the ratio of proliferation to apotosis reduced and the severity of restenosis relieved after stent implantation.展开更多
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve...Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.展开更多
A new cerebroside,1-O-(β-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-[(2′R)-2’-hydroxylignoceranoylamino]-4,8-tetradecene-3- diol was isolated from the 60%EtOH extract of traditional Chinese medical plant Cyperus rotundus...A new cerebroside,1-O-(β-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-[(2′R)-2’-hydroxylignoceranoylamino]-4,8-tetradecene-3- diol was isolated from the 60%EtOH extract of traditional Chinese medical plant Cyperus rotundus L.Its structure was determined on the basis of spectroscopic data.This new compound showed anti-proliferation effect on vascular smooth muscle cells(VSMCs).展开更多
A series of new aurone derivatives was prepared by means of a practical route and their anti-vascular smooth muscle cells(VSMC) vegetation activities were evaluated by the 3-(4,5-dimethylthlazol-2-yl)-2,5- dipheny...A series of new aurone derivatives was prepared by means of a practical route and their anti-vascular smooth muscle cells(VSMC) vegetation activities were evaluated by the 3-(4,5-dimethylthlazol-2-yl)-2,5- diphenyltetrazolium bromide(MTT) method with tetrandrine as a positive contrast drug. The structures of the com- pounds were confirmed by 1H NMR, 13C NMR and electrospray ionization mass spectrometry(ESI-MS). Several new compounds exhibited promising activity against VSMC proliferation and the preliminary structure-activity relation- ships(SAR) were discussed in order to investigate the essential structures required for their bioactivities.展开更多
Background Current prosthetic, small diameter vascular grafts showing poor long term patency rates have led to the pursuit of other biological materials. Biomaterials that successfully integrate into surrounding tissu...Background Current prosthetic, small diameter vascular grafts showing poor long term patency rates have led to the pursuit of other biological materials. Biomaterials that successfully integrate into surrounding tissue should match not only the mechanical properties of tissues, but also topography. Polyglycolic acid (70130) has been used as synthetic grafts to determine whether human vascular smooth muscle cells and endothelial cells attach, survive and secrete endothelin and 6-keto-prostaglandin F1α (6-keto-PGF1α). Methods Endothelial cells and smooth muscle cells were isolated from adult human great saphenous vein. They were seeded on polyglycolic acid scaffold in vitro separately to grew vascular patch (Groups A and B respectively) and cocultured in vitro to grow into vascular patch (Group C). Smooth muscle cells and endothelial cells were identified by immunohistochemical analysis and growth of cells on polyglycolic acid was investigated using scanning electron microscopy. The levels of endothelin and 6-keto-PGF1α in the culturing solutions were examined by radioimmunology to measure endothelial function. Results Seed smooth muscle cells adhered to polyglycolic acid scaffold and over 28 days grew in the interstices to form a uniform cell distribution throughout the scaffold. Then seed endothelial cells formed a complete endothelial layer on the smooth muscle cells. The levels of endothelin and 6-keto-prostaglandin F1 alpha in the culturing solution were (234±29) pg/ml and (428±98) pg/ml respectively in Group C and (196±30) pg/ml and (346±120) pg/ml in Group B; both significantly higher than in Groups A and D (blank control group, all P〈0.05 ). Conclusions Cells could be grown successfully on polyglycolic acid and retain functions of secretion. Our next step is to use human saphenous vein smooth muscle cells and endothelial cells to grow tubular vascular grafts in vitro.展开更多
Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultur...Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Methods: Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10^-9-10^-5 mol/L) were added when VSMCs were induced with 1 000 pmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Results: Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 pmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and ac- tivation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Conclusions: Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and acti- vation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.展开更多
Objective: This study is to determine the effect of the natural product parthenolide, a sesquiterpene lactone isolated from extracts of the herb Tanacetum parthenium, on the proliferation of vascular smooth muscle ce...Objective: This study is to determine the effect of the natural product parthenolide, a sesquiterpene lactone isolated from extracts of the herb Tanacetum parthenium, on the proliferation of vascular smooth muscle cells (VSMCs). Methods: Rat aortic VSMCs were isolated and cultured in vitro, and treated with different concentrations ofparthenolide (l 0, 20 and 30 μmol/L). [^3H]thymidine incorporation was used as an index of cell proliferation. Cell cycle progression and distribution were determined by flow cytometric analysis. Furthermore, the expression of several regulatory proteins relevant to VSMC proliferation including IκBα, cyclooxygenase-2 (Cox-2), p21, and p27 was examined to investigate the potential molecular mechanism. Results: Treatment with parthenolide significantly decreased the [^3H]thymidine incorporation into DNA by 30%-56% relative to control values in a dose-dependent manner (P〈0.05). Addition of parthenolide also increased cell population at G0/G1 phase by 19.2%-65.7% (P〈0.05) and decreased cell population at S phase by 50.7%-84.8% (P〈0.05), which is consistent with its stimulatory effects on p21 and p27. In addition, parthenolide also increased IκBα expression and reduced Cox-2 expression in a time-dependent manner. Conclusion: Our results show that parthenolide significantly inhibits the VSMC proliferation by inducing G0/G1 cell cycle arrest. IκBα and Cox-2 are likely involved in such inhibitory effect ofparthenolide on VSMC proliferation. These findings warrant further investigation on potential therapeutic implications ofparthenolide on VSMC proliferation in vivo.展开更多
We have shown that platelet-derived microvesicles(PMVs)induce abnormal proliferation,migration,and energy metabolism of vascular smooth muscle cells(VSMCs)after vascular intimal injury.Here,we examined a novel role of...We have shown that platelet-derived microvesicles(PMVs)induce abnormal proliferation,migration,and energy metabolism of vascular smooth muscle cells(VSMCs)after vascular intimal injury.Here,we examined a novel role of podosome in mediating matrix metalloproteinase-9(MMP-9)dependent VSMC migration induced by plateletderived microvesicles(PMVs).VSMCs were isolated from the thoracic aortas of male Sprague Dawley(SD)rats and identified with immunofluorescent staining.Blood samples were collected from SD Rats,the platelets were isolated with density gradient centrifugation from the blood samples and activated by collagen I.Intriguingly,proteins expressed in platelets were found to participate in the positive regulation of podosome assembly using GO analysis by DAVID,and most of the proteins were found in extracellular exosomes.Of note,activated platelets indirectly induced VSMC migration via releasing PMVs which was verified using platelets and VSMCs transwell coculture system.Besides,podosome,an invasive protrusion to mediate extracellular matrix(ECM)remodeling,was formed in VSMCs to induce cell migration.Furthermore,MMP-9 activity detected by gelatin zymography was used to verify the function of the podosome in ECM remodeling.The result indicated that MMP-9 activity was robustly activated in VSMCs to implement the function of the podosome.In addition,gelatin degradation was detected in intact VSMCs using a gelatin degradation assay after co-culture with platelets.Taken together,our data reveal a novel mechanism that PMVs promote VSMC migration via forming podosomes and inducing MMP-9 activity.展开更多
The proliferation of vascular smooth muscle cells(VSMCs)contributes to the pathogenesis of atherosclerosis and restenosis after angioplasty and vein graft.In this study,MTT colormetry was used to test the effective sc...The proliferation of vascular smooth muscle cells(VSMCs)contributes to the pathogenesis of atherosclerosis and restenosis after angioplasty and vein graft.In this study,MTT colormetry was used to test the effective scope of emodin to inhibit VSMCs proliferation.Flow cytometry and confocal image were adopted to investigate its inhibitive mechanism.The results show that emodin could inhibit the growth and proliferation of VSMCs and the inhibition rate of emodin on VSMCs is 24.6%-94.58%,which is time-and concentration-dependent.Emodin could reduce S phase entry,increase the apoptosis of VSMCs,and reduce the intensity of[Ca^(2+)]_(i)in hPDGF B/B stimulated VSMCs.This research provides theoretical basis for medical application of emodin.It is concluded that emodin could inhibit the growth and proliferation of VSMCs effectively.Decreasing the DNA synthesis,increasing the cell apoptosis and reducing the intensity of[Ca^(2+)]_(i)in hPDGF B/B stimulated VSMCs may be the inhibitive mechanism of emodin against VSMCs proliferation.展开更多
文摘BACKGROUND The development of fully functional small diameter vascular grafts requires both a properly defined vessel conduit and tissue-specific cellular populations.Mesenchymal stromal cells(MSCs) derived from the Wharton's Jelly(WJ) tissue can be used as a source for obtaining vascular smooth muscle cells(VSMCs),while the human umbilical arteries(h UAs) can serve as a scaffold for blood vessel engineering.AIM To develop VSMCs from WJ-MSCs utilizing umbilical cord blood platelet lysate.METHODS WJ-MSCs were isolated and expanded until passage(P) 4. WJ-MSCs were properly defined according to the criteria of the International Society for Cell and Gene Therapy. Then, these cells were differentiated into VSMCs with the use of platelet lysate from umbilical cord blood in combination with ascorbic acid,followed by evaluation at the gene and protein levels. Specifically, gene expression profile analysis of VSMCs for ACTA2, MYH11, TGLN, MYOCD, SOX9,NANOG homeobox, OCT4 and GAPDH, was performed. In addition,immunofluorescence against ACTA2 and MYH11 in combination with DAPI staining was also performed in VSMCs. HUAs were decellularized and served as scaffolds for possible repopulation by VSMCs. Histological and biochemical analyses were performed in repopulated h UAs.RESULTS WJ-MSCs exhibited fibroblastic morphology, successfully differentiating into"osteocytes", "adipocytes" and "chondrocytes", and were characterized by positive expression(> 90%) of CD90, CD73 and CD105. In addition, WJ-MSCs were successfully differentiated into VSMCs with the proposed differentiation protocol. VSMCs successfully expressed ACTA2, MYH11, MYOCD, TGLN and SOX9. Immunofluorescence results indicated the expression of ACTA2 and MYH11 in VSMCs. In order to determine the functionality of VSMCs, h UAs were isolated and decellularized. Based on histological analysis, decellularized h UAs were free of any cellular or nuclear materials, while their extracellular matrix retained intact. Then, repopulation of decellularized h UAs with VSMCs was performed for 3 wk. Decellularized h UAs were repopulated efficiently by the VSMCs. Biochemical analysis revealed the increase of total hydroyproline and s GAG contents in repopulated h UAs with VSMCs. Specifically, total hydroxyproline and s GAG content after the 1 st, 2 nd and 3 rd wk was 71 ± 10, 74 ± 9 and 86 ± 8 μg hydroxyproline/mg of dry tissue weight and 2 ± 1, 3 ± 1 and 3 ± 1μg s GAG/mg of dry tissue weight, respectively. Statistically significant differences were observed between all study groups(P<0.05).CONCLUSION VSMCs were successfully obtained from WJ-MSCs with the proposed differentiation protocol. Furthermore, h UAs were efficiently repopulated by VSMCs. Differentiated VSMCs from WJ-MSCs could provide an alternative source of cells for vascular tissue engineering.
基金supported by Shanghai Science Committee Fund for Key Research Project (No. 04JC14012)Fudan University Med-X Fund, China
文摘Background: A major shortcoming in tissue engineered blood vessels (TEBVs) is the lack of healthy and easily attainable smooth muscle cells (SMCs). Smooth muscle progenitor cells (SPCs), especially from peripheral blood, may offer an alternative cell source for tissue engineering involving a less invasive harvesting technique. Methods: SPCs were isolated from 5-ml fresh rat peripheral blood by density-gradient centrifugation and cultured for 3 weeks in endothelial growth medium-2-MV (EGM-2-MV) medium containing platelet-derived growth factoroBB (PDGF BB). Before seeded on the synthesized scaffold, SPC-derived smooth muscle outgrowth cell (SOC) phenotypes were assessed by immuno-fluorescent staining, Western blot analysis, and reverse transcription polymerase chain reaction (RT-PCR). The cells were seeded onto the silk fibroin-modified poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (SF-PHBHHx) scaflblds by 6× 10^4 cells/cm^2 and cultured under the static condition for 3 weeks. The growth and proliferation of the seeded cells on the scaffold were analyzed by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (MTT) assay, scanning electron microscope (SEM), and 4,6-diamidino-2-phenylindole (DAPI) staining. Results: SOCs displayed specific "hill and valley" morphology, expressed the specific markers of the SMC lineage: smooth muscle (SM) a-actin, calponin and smooth muscle myosin heavy chain (SM MHC) at protein and messenger ribonucleic acid (mRNA) levels. RT-PCR results demonstrate that SOCs also expressed smooth muscle protein 22a (SM22a, a contractile protein, and extracellular matrix components elastin and matrix Gla protein (MGP), as well as vascular endothelial growth factor (VEGF). After seeded on the SF-PHBHHx scaffold, the cells showed excellent metabolic activity and proliferation. Conclusion: SPCs isolated from peripheral blood can be differentiated the SMCs in vitro and have an impressive growth potential in the biodegradable synthesized scaffold. Thus, SPCs may be a promising cell sointo urce for constructing TEBVs.
文摘Vascular smooth muscle cells have attracted considerable interest as a model for a flexible program of gene expression.This cell type arises throughout the embryo body plan via poorly understood signaling cascades that direct the expression of transcription factors and microRNAs which,in turn,orchestrate the activation of contractile genes collectively defining this cell lineage.The discovery of myocardin and its close association with serum response factor has represented a major break-through for the molecular understanding of vascular smooth muscle cell differentiation.Retinoids have been shown to improve the outcome of vessel wall remodeling following injury and have provided further insights into the molecular circuitry that defines the vascular smooth muscle cell phenotype.This review summarizes the progress to date in each of these areas of vascular smooth muscle cell biology.
基金supported by grants from the National Natural Science Foundation of China,Nos10732070,10702043,30970703,10972140 and 30470432
文摘Instruction Shear stress,caused by the parallel frictional drag force of blood flow,is a biomechanical force which plays an important role in the control of blood vessels growth and functions [1]. Clinical researches had found out that atherosclerotic le-
文摘Background and Objective In-stent restenosis(ISR)remains a major limitation of percutaneous coronary intervention despite improvements in stent design and pharmacological agents,whereas the mechanism of ISR has not been fully clarified.In the present study,we sought to investigate the potential association of serum soluble TREM-1(sTREM-1)levels with the incidence of ISR.The role of TREM-1 was evaluated in cultured vascular smooth muscle cells(VSMCs).
基金supported by the National Natural Science Foundation of China(No.30570732),NCET-04-197"985 Project"of Ministry of Education,Study on molecular mechanism of vascular-related diseases and on gene function.
文摘Objective:ATP-binding cassette transporters(ABC) A1 and G1 play an important role in mediating cholesterol efflux and preventing macrophage foam cell formation. In this study, we examined the regulation of ABC transporters by high glucose in human vascular smooth muscle cells(VSMCs), the other precursor of foam cells. Methods:Incubation of human VSMCs with D-glucose(5 to 30 mM) for 1 to 7 days in the presence or absence of antioxidant and nuclear factor(NF)- κ B inhibitors, the expressions of ABCA1 and ABCG1 were analyzed by real time PCR and Western blotting. Results:High glucose decreased ABCG1 mRNA and protein expression in cultured VSMCs, whereas the expression of ABCA1 was not significantly decreased. Down-regulation of ABCG1 mRNA expression by high glucose was abolished by antioxidant N-acetyl-L-cysteine(NAC) and NF- κ B inhibitors, BAY 11-7085 and tosyl-phenylalanine chloromethyl-ketone(TPCK). Conclusion:High glucose suppresses the expression of ABCG1 in VSMCs, which is the possible mechanism of VSMC derived foam cell transformation.
文摘Objectives To evaluate the impact of stent implantation on proliferation and apop-tosis in injured media vascular smooth muscle cells (VSMC) and to explore the mechanism of restenosis after stent implantation. Methods Fifty male New Zealand rabbits were randomized into two groups, including balloon group and stent group. Control group was set up. The samples were harvested on 3, 7, 14, 28, 56 days after operation and the following investigation was carried out: (1) Assessing the expression of proliferating cell nuclear antigen (PCNA) of media VSMC by the method of immunohistochemistry; (2) Analyzing apoptosis of media VSMC by DNA agarose gel electrophoresis and TUNEL technique. Results The expression of PCNA and apoptosis in stent and balloon groups were markedly increased compared with control groups. (1) Stent group induced significant increased expression of PCNA in the media VSMC compared with balloon group on 3 to 28 days. On day 7, the positive rates of PCNA were 24. 36±0. 55 % vs 18. 74±1. 09 % ( P < 0. 01 ); (2) From 3 to 28 days, stent group appeared obvious DNA ladder, while balloon group only had little trace ; (3) TUNEL method showed that stent group induced much more significant apoptosis than that of balloon group on 3 to 28 days. The highest rate of apoptosis appeared on day 7: 12. 42 ±1.13% vs 5. 54±0.53% (P<0. 01); (4) By calculating the ratio of the positive rate of PCNA to apoptosis, it showed that on 3 to 28 days, the ratio of balloon group was higher than that of stent group. There was obvious difference between two groups. Conclusions Stent group induces augmented proliferation and much more significant apoptosis of media VSMC than that of balloon group. It makes the ratio of proliferation to apotosis reduced and the severity of restenosis relieved after stent implantation.
文摘Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.
基金supported by 2006 Great Basic Science Research Project of Jiangsu College and University(No. 06KJA36022)
文摘A new cerebroside,1-O-(β-D-glucopyranosyloxy)-(2S,3R,4E,8Z)-2-[(2′R)-2’-hydroxylignoceranoylamino]-4,8-tetradecene-3- diol was isolated from the 60%EtOH extract of traditional Chinese medical plant Cyperus rotundus L.Its structure was determined on the basis of spectroscopic data.This new compound showed anti-proliferation effect on vascular smooth muscle cells(VSMCs).
基金Supported by the National Natural Science Foundation of China(No.81172938)the Program for the Top Science and Technology Innovation Teams of Higher Learning Institutions of Shanxi Province,China+1 种基金the Shanxi Foundation for Overseas Returned,China(No.2008-51)the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi Province,China
文摘A series of new aurone derivatives was prepared by means of a practical route and their anti-vascular smooth muscle cells(VSMC) vegetation activities were evaluated by the 3-(4,5-dimethylthlazol-2-yl)-2,5- diphenyltetrazolium bromide(MTT) method with tetrandrine as a positive contrast drug. The structures of the com- pounds were confirmed by 1H NMR, 13C NMR and electrospray ionization mass spectrometry(ESI-MS). Several new compounds exhibited promising activity against VSMC proliferation and the preliminary structure-activity relation- ships(SAR) were discussed in order to investigate the essential structures required for their bioactivities.
基金a grant from the Capital Medical Development Scientific Research Fund(No.2002-306)
文摘Background Current prosthetic, small diameter vascular grafts showing poor long term patency rates have led to the pursuit of other biological materials. Biomaterials that successfully integrate into surrounding tissue should match not only the mechanical properties of tissues, but also topography. Polyglycolic acid (70130) has been used as synthetic grafts to determine whether human vascular smooth muscle cells and endothelial cells attach, survive and secrete endothelin and 6-keto-prostaglandin F1α (6-keto-PGF1α). Methods Endothelial cells and smooth muscle cells were isolated from adult human great saphenous vein. They were seeded on polyglycolic acid scaffold in vitro separately to grew vascular patch (Groups A and B respectively) and cocultured in vitro to grow into vascular patch (Group C). Smooth muscle cells and endothelial cells were identified by immunohistochemical analysis and growth of cells on polyglycolic acid was investigated using scanning electron microscopy. The levels of endothelin and 6-keto-PGF1α in the culturing solutions were examined by radioimmunology to measure endothelial function. Results Seed smooth muscle cells adhered to polyglycolic acid scaffold and over 28 days grew in the interstices to form a uniform cell distribution throughout the scaffold. Then seed endothelial cells formed a complete endothelial layer on the smooth muscle cells. The levels of endothelin and 6-keto-prostaglandin F1 alpha in the culturing solution were (234±29) pg/ml and (428±98) pg/ml respectively in Group C and (196±30) pg/ml and (346±120) pg/ml in Group B; both significantly higher than in Groups A and D (blank control group, all P〈0.05 ). Conclusions Cells could be grown successfully on polyglycolic acid and retain functions of secretion. Our next step is to use human saphenous vein smooth muscle cells and endothelial cells to grow tubular vascular grafts in vitro.
基金Project supported by the Health Ministry Scientific Research Fund of China (No. WKJ2011-2-018)the Zhejiang Provincial Natural Science Foundation of China (No. Y2100535)+3 种基金the Key Social Development Project of Zhejiang Province (No. 2010A23010)the Science and Technology Projects of Shaoxing (No. 2011A23011)the Science and Technology Plan Project of Zhejiang Province (No. 2012C33040)the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents, China
文摘Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Methods: Rat VSMCs were incubated with different concentrations of homocysteine (50-5000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10^-9-10^-5 mol/L) were added when VSMCs were induced with 1 000 pmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Results: Homocysteine (50-1000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5000 pmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and ac- tivation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50-5000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Conclusions: Homocysteine (50-1000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease the excessive expression and acti- vation of MMP-2 and abnormal migration of VSMCs induced by homocysteine.
基金Project (No. 491020-W50315) supported by the Foundation of the Health Bureau of Zhejiang, China
文摘Objective: This study is to determine the effect of the natural product parthenolide, a sesquiterpene lactone isolated from extracts of the herb Tanacetum parthenium, on the proliferation of vascular smooth muscle cells (VSMCs). Methods: Rat aortic VSMCs were isolated and cultured in vitro, and treated with different concentrations ofparthenolide (l 0, 20 and 30 μmol/L). [^3H]thymidine incorporation was used as an index of cell proliferation. Cell cycle progression and distribution were determined by flow cytometric analysis. Furthermore, the expression of several regulatory proteins relevant to VSMC proliferation including IκBα, cyclooxygenase-2 (Cox-2), p21, and p27 was examined to investigate the potential molecular mechanism. Results: Treatment with parthenolide significantly decreased the [^3H]thymidine incorporation into DNA by 30%-56% relative to control values in a dose-dependent manner (P〈0.05). Addition of parthenolide also increased cell population at G0/G1 phase by 19.2%-65.7% (P〈0.05) and decreased cell population at S phase by 50.7%-84.8% (P〈0.05), which is consistent with its stimulatory effects on p21 and p27. In addition, parthenolide also increased IκBα expression and reduced Cox-2 expression in a time-dependent manner. Conclusion: Our results show that parthenolide significantly inhibits the VSMC proliferation by inducing G0/G1 cell cycle arrest. IκBα and Cox-2 are likely involved in such inhibitory effect ofparthenolide on VSMC proliferation. These findings warrant further investigation on potential therapeutic implications ofparthenolide on VSMC proliferation in vivo.
基金supported by grants from the National Natural Science Foundation of China[grant numbers 12032003 and 12102261].
文摘We have shown that platelet-derived microvesicles(PMVs)induce abnormal proliferation,migration,and energy metabolism of vascular smooth muscle cells(VSMCs)after vascular intimal injury.Here,we examined a novel role of podosome in mediating matrix metalloproteinase-9(MMP-9)dependent VSMC migration induced by plateletderived microvesicles(PMVs).VSMCs were isolated from the thoracic aortas of male Sprague Dawley(SD)rats and identified with immunofluorescent staining.Blood samples were collected from SD Rats,the platelets were isolated with density gradient centrifugation from the blood samples and activated by collagen I.Intriguingly,proteins expressed in platelets were found to participate in the positive regulation of podosome assembly using GO analysis by DAVID,and most of the proteins were found in extracellular exosomes.Of note,activated platelets indirectly induced VSMC migration via releasing PMVs which was verified using platelets and VSMCs transwell coculture system.Besides,podosome,an invasive protrusion to mediate extracellular matrix(ECM)remodeling,was formed in VSMCs to induce cell migration.Furthermore,MMP-9 activity detected by gelatin zymography was used to verify the function of the podosome in ECM remodeling.The result indicated that MMP-9 activity was robustly activated in VSMCs to implement the function of the podosome.In addition,gelatin degradation was detected in intact VSMCs using a gelatin degradation assay after co-culture with platelets.Taken together,our data reveal a novel mechanism that PMVs promote VSMC migration via forming podosomes and inducing MMP-9 activity.
文摘The proliferation of vascular smooth muscle cells(VSMCs)contributes to the pathogenesis of atherosclerosis and restenosis after angioplasty and vein graft.In this study,MTT colormetry was used to test the effective scope of emodin to inhibit VSMCs proliferation.Flow cytometry and confocal image were adopted to investigate its inhibitive mechanism.The results show that emodin could inhibit the growth and proliferation of VSMCs and the inhibition rate of emodin on VSMCs is 24.6%-94.58%,which is time-and concentration-dependent.Emodin could reduce S phase entry,increase the apoptosis of VSMCs,and reduce the intensity of[Ca^(2+)]_(i)in hPDGF B/B stimulated VSMCs.This research provides theoretical basis for medical application of emodin.It is concluded that emodin could inhibit the growth and proliferation of VSMCs effectively.Decreasing the DNA synthesis,increasing the cell apoptosis and reducing the intensity of[Ca^(2+)]_(i)in hPDGF B/B stimulated VSMCs may be the inhibitive mechanism of emodin against VSMCs proliferation.