Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic en...Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss(d E/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1× 10^11 ions/cm^2 to 6× 10^15 ions/cm^2.Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1 uat 192, 308,and 651 cm^-1 appear in Raman spectra, and the F2 gband at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with(d E/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with(d E/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1 u651 cm^-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore–amorphous transition in pyrochlore irradiated with(d E/dx)e of 39.6 keV/nm.展开更多
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. No...It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.展开更多
The potential energy curves, spectroscopic constants, and low-lying vibration–rotation levels of ground-state O2 and its cation O2+ and anion O2- were calculated with the explicitly correlated multireference configur...The potential energy curves, spectroscopic constants, and low-lying vibration–rotation levels of ground-state O2 and its cation O2+ and anion O2- were calculated with the explicitly correlated multireference configuration interaction method.The zeroth-order reference wavefunction was treated with the complete active space multiconfigurational self-consistent field method, in which the active space was carefully selected, and an additional molecular orbital πu was added into the full valence active space.The electron correlation of the 1s core in the oxygen atom was considered in the computations.The Davidson correction on molecular energy was considered to account for higher electron excitation.The relativistic effects, including the scalar relativistic effect and spin–orbit coupling, were considered in the computation of potential energy curves.These physical effects on the spectroscopic constants were examined.The low-lying levels of vibration–rotation spectra of O2 and its ions were determined based on the computed potential energy curves.Comparisons with available experiments were made and excellent agreement was obtained for the vibrational and rotational parameters.The spectroscopic constants and vibration–rotation spectrum of O2-, which is sparse in experiments, were provided.Our study will shed some light on further theoretical and experimental studies on these simple but important molecular systems.展开更多
The interaction of trivalent lanthanide ions and divalent calcium ions with sph-'ngomyelm bilayer has been studied by FT-Raman spectroscopy.The results showed that the bonding of metal ions to the phosphate group ...The interaction of trivalent lanthanide ions and divalent calcium ions with sph-'ngomyelm bilayer has been studied by FT-Raman spectroscopy.The results showed that the bonding of metal ions to the phosphate group of sphingomyelin bi-iayer,either La3+or Ca2+did not change the conformation of the choline group,that is,O-C-C-N+is still in its gauche conformation.The presence of metal ions changed the states of the interfacial region from liquid-like to amorphous state and even to crystalline.They increased the fluidity of acyl chains of sphingomyelin bilaver and made them packed disorderly.展开更多
A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. U...A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8A10.2-xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8A10.2-xTixO2 cathode materials are 0.1,700℃, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8A10.2-xTixO2.展开更多
We theoretically investigate the electron localization around two nuclei in harmonic emission from asymmetric molecular ion. The results show that the ionization process of electron localized around one nucleus compet...We theoretically investigate the electron localization around two nuclei in harmonic emission from asymmetric molecular ion. The results show that the ionization process of electron localized around one nucleus competes with its transfer process to the other nucleus. By increasing the initial vibrational level, more electrons localized around the nucleus D+ tend to transfer to the nucleus He2+ so that the ionizations of electrons localized around the nucleus He2+ increase. In this case, the difference in harmonic efficiency between Hell2+ and HeD2+ decreases while the difference in harmonic spectral structure increases. The evident minimum can be observed the spectral structure of HeD2+, which is due to the strong in the harmonic spectrum of Hell2+ compared with that in interference of multiple recombination channels originating from two nuclei. Time-dependent nuclear probability density, electron-nuclear probability density, double-well model, and time-frequency maps are presented to explain the underlying mechanisms.展开更多
提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewar...提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证;在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验。结果表明,被动隔振在30~200 Hz频段内具有约-36 d B/dec的衰减率,主动隔振在3~100 Hz频段内可获得最大20 d B的幅值衰减,<200 Hz,支腿力RMS值控制后下降75%~80%。展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11705246,11675233,and 11690041)the Natural Science Foundation of Gansu Province,China(Grant No.17JR5RA316)
文摘Polycrystalline samples of La2Zr2O7 pyrochlore are irradiated by different energetic heavy ions to investigate the dependence of the vibrational mode variations on the irradiation parameters. The applied electronic energy loss(d E/dx)e increases from about 5.2 keV/nm to 39.6 keV/nm. The ion fluence ranges from 1× 10^11 ions/cm^2 to 6× 10^15 ions/cm^2.Vibrational modes of irradiated pyrochlore are analyzed by using Raman spectrum. Infrared active modes F1 uat 192, 308,and 651 cm^-1 appear in Raman spectra, and the F2 gband at 265 cm-1 rises up due to the irradiation by 200-MeV Kr ions with(d E/dx)e of 16.0 keV/nm. Differently, for the pyrochlore irradiated by 1750-MeV Bi ions with(d E/dx)e of 39.6 keV/nm, in spite of the appearance of infrared active mode F1 u651 cm^-1, the amorphous structure occurs according to the vibrational mode variations of pyrochlore irradiated at higher ion fluences. Amorphous tracks are observed in the samples, which confirm the occurrence of pyrochlore–amorphous transition in pyrochlore irradiated with(d E/dx)e of 39.6 keV/nm.
基金supported by the National Natural Science Foundation of China(Grant No.61205108)the High Performance Computing(HPC)Foundation of National University of Defense Technology,China
文摘It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403300)the National Natural Science Foundation of China(Grant Nos.91750104,11574114,and 11874177)the Natural Science Foundation of Jilin Province,China(Grant No.20160101332JC)
文摘The potential energy curves, spectroscopic constants, and low-lying vibration–rotation levels of ground-state O2 and its cation O2+ and anion O2- were calculated with the explicitly correlated multireference configuration interaction method.The zeroth-order reference wavefunction was treated with the complete active space multiconfigurational self-consistent field method, in which the active space was carefully selected, and an additional molecular orbital πu was added into the full valence active space.The electron correlation of the 1s core in the oxygen atom was considered in the computations.The Davidson correction on molecular energy was considered to account for higher electron excitation.The relativistic effects, including the scalar relativistic effect and spin–orbit coupling, were considered in the computation of potential energy curves.These physical effects on the spectroscopic constants were examined.The low-lying levels of vibration–rotation spectra of O2 and its ions were determined based on the computed potential energy curves.Comparisons with available experiments were made and excellent agreement was obtained for the vibrational and rotational parameters.The spectroscopic constants and vibration–rotation spectrum of O2-, which is sparse in experiments, were provided.Our study will shed some light on further theoretical and experimental studies on these simple but important molecular systems.
基金Supported by the National Natural Sciences Foundation of China
文摘The interaction of trivalent lanthanide ions and divalent calcium ions with sph-'ngomyelm bilayer has been studied by FT-Raman spectroscopy.The results showed that the bonding of metal ions to the phosphate group of sphingomyelin bi-iayer,either La3+or Ca2+did not change the conformation of the choline group,that is,O-C-C-N+is still in its gauche conformation.The presence of metal ions changed the states of the interfacial region from liquid-like to amorphous state and even to crystalline.They increased the fluidity of acyl chains of sphingomyelin bilaver and made them packed disorderly.
文摘A new co-precipitation route was proposed to synthesize LiNi0.8A10.2-xTixO2 (x=0.0-0.20) cathode materials for lithium ion batteries, with Ni(NO3)2, Al(NO3)3, LiOH·H2O, and TiO2 as the starting materials. Ultrasonic vibration was used during preparing the precursors, and the precursors were protected by absolute ethanol before calcination in the air. The influences of doped-Ti content, calcination temperature and time, additional Li content, and ultrasonic vibration on the structure and properties of LiNi0.8A10.2-xTixO2 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge-discharge tests, respectively. The results show that the optimal molar fraction of Ti, calcination temperature and time, and additional molar fraction of Li for LiNi0.8A10.2-xTixO2 cathode materials are 0.1,700℃, 20 h, and 0.05, respectively. Ti doping facilitates the formation of the α-NaFeO2 layered structure, and ultrasonic vibration improves the electrochemical performance of LiNi0.8A10.2-xTixO2.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404204)the Key Project of Chinese Ministry of Education(Grant No.211025)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111404120004)the Natural Science Foundation for Young Scientists of Shanxi Province,China(Grant No.2009021005)the Innovation Project for Postgraduates of Shanxi Province,China(Grant No.20133081)
文摘We theoretically investigate the electron localization around two nuclei in harmonic emission from asymmetric molecular ion. The results show that the ionization process of electron localized around one nucleus competes with its transfer process to the other nucleus. By increasing the initial vibrational level, more electrons localized around the nucleus D+ tend to transfer to the nucleus He2+ so that the ionizations of electrons localized around the nucleus He2+ increase. In this case, the difference in harmonic efficiency between Hell2+ and HeD2+ decreases while the difference in harmonic spectral structure increases. The evident minimum can be observed the spectral structure of HeD2+, which is due to the strong in the harmonic spectrum of Hell2+ compared with that in interference of multiple recombination channels originating from two nuclei. Time-dependent nuclear probability density, electron-nuclear probability density, double-well model, and time-frequency maps are presented to explain the underlying mechanisms.
文摘提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证;在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验。结果表明,被动隔振在30~200 Hz频段内具有约-36 d B/dec的衰减率,主动隔振在3~100 Hz频段内可获得最大20 d B的幅值衰减,<200 Hz,支腿力RMS值控制后下降75%~80%。