The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according...The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.展开更多
The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential fu...The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential function for longer internuclear distances. Solving the corresponding radial one-dimensional Schr?dinger equation of nuclear motion yields 22 bound vibrational levels above v=0. The comparison of these theoretical levels with the experimental data yields a mean absolute deviation of about 7.6 cm^-1 over the 23 levels. The highest vibrational level energy obtained using this method is 13308.16 cm?1 and the relative deviation compared with the experimental datum of 13408.49 cm^-1 is only 0.74%. The value from our method is much closer and more accurate than the value obtained by the quantum mechanical ab initio method by Bytautas. The reported agreement of the vibrational levels and dissociation energy with experiment is contingent upon the potential energy curve of the F2 ground state.展开更多
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t...Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the AdoInian decomposition method. T...The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the AdoInian decomposition method. The solution contains arbitrary initial conditions and zero input. For specific analysis, the initial conditions were assumed homogeneous, and the input force was treated as a special process with a particular beam. Two simple cases, step and impulse function responses, were considered respectively. Subsequently, some figures were plotted to show the displacement of the beam under different sets of parameters including different orders of the fractional derivatives.展开更多
In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear ela...In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear elastic body vibrations. In the modified ELM, equilibrium over the lines on the natural boundary is satisfied as Neumann boundary condition equations. In other words, the natural boundary conditions are satisfied naturally by using the weak formulation. The performance of the modified version of the ELM is studied for collocation methods based on two different ways to construct meshless shape functions: moving least squares approximation and radial basis point interpolation. Numerical examples of two-dimensional free and forced vibration analyses show that by using the modified ELM, more stable and accurate results would be obtained in comparison with the direct collocation method.展开更多
In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates w...In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.展开更多
Using the axial symmetry results of marker and cell (MAC) method as initial value in this paper, two numerical calculating methods are presented for the late wavemaking response induced by explosion in harbour. One of...Using the axial symmetry results of marker and cell (MAC) method as initial value in this paper, two numerical calculating methods are presented for the late wavemaking response induced by explosion in harbour. One of the methods is the superposition method of the vibration mode based on fluid slosh in container. Another one is the joining method of the MAC results with the shallow wave theory calculation in time domain. As a practical example, it is conducted to the numerical calculation about 1000 ton TNT equivalent explosion within touch of water surface. The results show that it can be rationally described with the methods to the wavemaking progress and character. The numerical results are identical with the observed scene on the spot experiment. The methods are simple and applicable in the engineering design.展开更多
The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for cal...The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.展开更多
This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear syst...This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear system, if its derived linear system is a damped dissipative system, the steady response obtained through the regular perturbation method is exactly identical to the response given by the Volterra series. On the other hand, if the derived linear system is an undamped conservative system, then the Volterra series is incapable of modeling the forced polynomial nonlinear system. Numerical examples are further presented to illustrate these points. The results provide a new criterion for quickly judging whether the Volterra series is applicable for modeling a given polynomial nonlinear system.展开更多
Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective...Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.展开更多
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by con...The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.展开更多
Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of mo...Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model is used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings is constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string is investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real-mode Galerkin method for a variable coefficient gyroscopic system.展开更多
Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are establishe...Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are established and the expression of additional rotation induced by the crack is derived. The complex eigenvalue equations of the viscoelastic plate with crack are derived by the differential quadrature method, and the 8method is used at the crack continuity conditions. Dimensionless complex frequencies of a crack viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated. The effects of the crack parameter, the aspect ratio and dimensionless delay time of the material on the transverse vibration of the viscoelastic plate are analyzed.展开更多
The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circu...The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes.展开更多
The complete experimental IR spectra and vibrational analysis of the title complex Co(mnt)(dmbpy) were reported in this paper. The results show that the complex molecule has a planar geometry belonging to point group ...The complete experimental IR spectra and vibrational analysis of the title complex Co(mnt)(dmbpy) were reported in this paper. The results show that the complex molecule has a planar geometry belonging to point group C 2v and ground electronic state with spin quartet. A new method for analyzing vibrational spectra of complicated molecule is established. The essential of this method is to point out main fixed points and pivotal vibrational units in assignment for each fundamental band. Two new symbols η (heaving along the specified direction) and M (midpoint of a bond or unit) were defined for describing the vibrational modes accurately.展开更多
Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unk...Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon.展开更多
A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has ...A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has robustness to uncertainty of frequency, which makes it practical in engineering. Several time optimal and time-fuel optimal control strategies are designed for a kind of single flexible link. Simulation results validate the feasibility of our method.展开更多
Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, ela...Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.展开更多
The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of moti...The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.展开更多
文摘The component synthesis active vibration suppression method (CSVS) can be applied to suppress the vibration of flexible systems. By this method, several same or similar time-varying components are arranged according to certain rules along the time axis. The synthesized command can suppress the arbitrary unwanted vibration harmonic while achieving the desired rigid body motion. The number of the components increases rapidly when the number of harmonic vibration is growing. In this article, the CSVS based on zero-placement technique is used to construct the synthesized command to suppress the multi-harmonics simultaneously in the discrete domain. The nature of zero-placement method is to put enough zeros to cancel system poles at necessary points. The designed synthesized command has equal time intervals between each component and which is much easier to be implemented. Using this method, the number of components increases linearly with the increasing of the number of being suppressed harmonics. For the spacecraft with flexible appendages, CSVS based on zero-placement is used to design the time optimal large angle maneuver control strategy. Simulations have verified the validity and superiority of the proposed approach.
基金This work was supported by the National Natural Science Foundation of China (No.20273066).
文摘The potential energy curves of the ground state X2∑+g of the fluorine molecule have been accurately reconstructed employing the Ryderg-Klein-Rees (RKR) method extrapolated by a Hulburt and Hirschfeler potential function for longer internuclear distances. Solving the corresponding radial one-dimensional Schr?dinger equation of nuclear motion yields 22 bound vibrational levels above v=0. The comparison of these theoretical levels with the experimental data yields a mean absolute deviation of about 7.6 cm^-1 over the 23 levels. The highest vibrational level energy obtained using this method is 13308.16 cm?1 and the relative deviation compared with the experimental datum of 13408.49 cm^-1 is only 0.74%. The value from our method is much closer and more accurate than the value obtained by the quantum mechanical ab initio method by Bytautas. The reported agreement of the vibrational levels and dissociation energy with experiment is contingent upon the potential energy curve of the F2 ground state.
基金Project(52178101) supported by the National Natural Science Foundation of China。
文摘Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
基金Project supported by the National Natural Science Foundation of China(Nos.10547124 and 10475055)
文摘The analytical solution of a viscoelastic continuous beam whose damping characteristics are described in terms of a fractional derivative of arbitrary order was derived by means of the AdoInian decomposition method. The solution contains arbitrary initial conditions and zero input. For specific analysis, the initial conditions were assumed homogeneous, and the input force was treated as a special process with a particular beam. Two simple cases, step and impulse function responses, were considered respectively. Subsequently, some figures were plotted to show the displacement of the beam under different sets of parameters including different orders of the fractional derivatives.
文摘In this paper, a collocation technique with the modified equilibrium on line method (ELM) for imposition of Neumann (natural) boundary conditions is presented for solving the two-dimensional problems of linear elastic body vibrations. In the modified ELM, equilibrium over the lines on the natural boundary is satisfied as Neumann boundary condition equations. In other words, the natural boundary conditions are satisfied naturally by using the weak formulation. The performance of the modified version of the ELM is studied for collocation methods based on two different ways to construct meshless shape functions: moving least squares approximation and radial basis point interpolation. Numerical examples of two-dimensional free and forced vibration analyses show that by using the modified ELM, more stable and accurate results would be obtained in comparison with the direct collocation method.
文摘In this paper the method of the reciprocal theorem (MRT) is extended to solve the steady state responses of rectangular plater under harmonic disturbing forces. A series of the closed solutions of rectangular plates with various boundary conditions are given and the tables and figures which have practical value are provided.MRT is a simple, convenient and general method for solving the steady stale responses of rectangular plates under various harmonic disturbing forces.The paper contains three parts: (I) rectangular plates with four damped edges and with three clamped edges; (II) rectangular plates with two adjacent clamped edges; (III) cantilever plates.We arc going to publish them one after another.
基金Subsidized subject financially supported by the National Natural Science Foundation of China
文摘Using the axial symmetry results of marker and cell (MAC) method as initial value in this paper, two numerical calculating methods are presented for the late wavemaking response induced by explosion in harbour. One of the methods is the superposition method of the vibration mode based on fluid slosh in container. Another one is the joining method of the MAC results with the shallow wave theory calculation in time domain. As a practical example, it is conducted to the numerical calculation about 1000 ton TNT equivalent explosion within touch of water surface. The results show that it can be rationally described with the methods to the wavemaking progress and character. The numerical results are identical with the observed scene on the spot experiment. The methods are simple and applicable in the engineering design.
基金Research is financed from the project NR03-0036-04/2008
文摘The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.
基金supported by the National Science Fund for Distinguished Young Scholars(11125209)the National Natural Science Foundation of China(51121063 and 10702039)
文摘This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear system, if its derived linear system is a damped dissipative system, the steady response obtained through the regular perturbation method is exactly identical to the response given by the Volterra series. On the other hand, if the derived linear system is an undamped conservative system, then the Volterra series is incapable of modeling the forced polynomial nonlinear system. Numerical examples are further presented to illustrate these points. The results provide a new criterion for quickly judging whether the Volterra series is applicable for modeling a given polynomial nonlinear system.
文摘Argyris'natural approach is employed to analyze vibranon mode of multilayered composite plates and shells.The shells can be either symmetric or unsymmetric.The spectral transformation Lanczos method with selective or fully orthogonalization is used to solve the eigenvalue problem of pencil(K,M).Some problems on shift,which is essential for the success of this method, are discussed.A few numerical examples, including composite square plates and conical shells,are presented. The results show that the method in this paper is efficient and reliable for vibration mode analysis.
基金Project supported by the National Natural Science Foundation of China(No.11272278)
文摘The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.
基金Project supported by the National Natural Science Foundation of China (No. 10472060)Shanghai Leading Academic Discipline Project (No.Y0103)the Natural Science Foundation of Shanghai (No.04ZR14058)the Outstanding Youth Program of Shanghai Municipal Commission of Educatio(No.04YQHB088)
文摘Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model is used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings is constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string is investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real-mode Galerkin method for a variable coefficient gyroscopic system.
基金supported by National Natural Science Foundation of China(No.10872163).
文摘Based on the two-dimensional viscoelastic differential constitutive relation and the thin plate theory, the differential equations of motion of the viscoelastic plate with an all-over part-through crack are established and the expression of additional rotation induced by the crack is derived. The complex eigenvalue equations of the viscoelastic plate with crack are derived by the differential quadrature method, and the 8method is used at the crack continuity conditions. Dimensionless complex frequencies of a crack viscoelastic plate with four edges simply supported, two opposite edges simply supported and other two edges clamped are calculated. The effects of the crack parameter, the aspect ratio and dimensionless delay time of the material on the transverse vibration of the viscoelastic plate are analyzed.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No.20110095120004)+1 种基金the Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485) for this work
文摘The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM). The motion and penetration of the particles on the screen deck were analyzed for linear, circular and elliptical vibration of the screen. The results show that the travel velocity of the particles is the fastest, but the screening efficiency is the lowest, for the linear vibration mode. The circular motion resulted in the highest screening efficiency, but the lowest particle travel velocity. In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck. The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment. The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck. Linear screening mode has more near-mesh and small size particles on the first three deck sections, and fewer on the last two sections, compared to the circular or elliptical modes.
基金Supported by the National Natural Science F oundation of China( No. 2 97710 2 5 )
文摘The complete experimental IR spectra and vibrational analysis of the title complex Co(mnt)(dmbpy) were reported in this paper. The results show that the complex molecule has a planar geometry belonging to point group C 2v and ground electronic state with spin quartet. A new method for analyzing vibrational spectra of complicated molecule is established. The essential of this method is to point out main fixed points and pivotal vibrational units in assignment for each fundamental band. Two new symbols η (heaving along the specified direction) and M (midpoint of a bond or unit) were defined for describing the vibrational modes accurately.
文摘Imperfections in the wheel-rail contact are one of the main sources of generation of railway vibrations. Consequently, it is essential to take expensive corrective maintenance measures, the results of which may be unknown. In order to assess the effectiveness of these measures, this paper develops a vehicle-track interaction model in the time domain of a curved track with presence of rail corrugation on the inner rail. To characterize the behavior of the track, a numerical finite element model is developed using ANSYS software, while the behavior of the vehicle is characterized by a unidirectional model of two masses developed with VAMPIRE PRO software. The overloads obtained with the dynamic model are applied to the numerical model and then, the vibrational response of the track is obtained. Results are validated with real data and used to assess the effectiveness of rail grinding in the reduction of wheel-rail forces and the vibration generation phenomenon.
基金This project is supported by National 211 Project.
文摘A component synthesis vibration suppression (CSVS) method for flexible structures is put forward. It can eliminate any unwanted orders of flexible vibration modes while achieves desired rigid motion. This method has robustness to uncertainty of frequency, which makes it practical in engineering. Several time optimal and time-fuel optimal control strategies are designed for a kind of single flexible link. Simulation results validate the feasibility of our method.
文摘Dynamics and vibration of control valves under flow-induced vibration are analyzed. Hydrodynamic load characteristics and structural response under flow-induced vibration are mainly influenced by inertia, damping, elastic, geometric characteristics and hydraulic parameters. The purpose of this work is to investigate the dynamic behavior of control valves in the response to self-excited fluid flow. An analytical and numerical method is developed to simulate the dynamic and vibrational behavior of sliding dam valves, in response to flow excitation. In order to demonstrate the effectiveness of proposed model, the simulation results are validated with experimental ones. Finally, to achieve the optimal valve geometry, numerical results for various shapes of valves are compared. Rounded valve with the least amount of flow turbulence obtains lower fluctuations and vibration amplitude compared with the flat and steep valves. Simulation results demonstrate that with the optimal design requirements of valves, vibration amplitude can be reduced by an average to 30%.
基金Natural Science Research Project of Education Department of Shaanxi Province,China(No.08JK394).
文摘The non-linear dynamic behaviors of thermoelastic circular plate with varying thickness subjected to radially uniformly distributed follower forces are considered. Two coupled non-linear differential equations of motion for this problem are derived in terms of the transverse deflection and radial displacement component of the mid-plane of the plate. Using the Kantorovich averaging method, the differential equation of mode shape of the plate is derived, and the eigenvalue problem is solved by using shooting method. The eigencurves for frequencies and critical loads of the circular plate with unmovable simply supported edge and clamped edge are obtained. The effects of the variation of thickness and temperature on the frequencies and critical loads of the thermoelastic circular plate subjected to radially uniformly distributed follower forces are then discussed.