We demonstrate the contrast reversal behaviour of topography artifacts by changing the diameter of the collection diaphragm in a transmission scanning near-field optical microscopy (SNOM). This originates from the c...We demonstrate the contrast reversal behaviour of topography artifacts by changing the diameter of the collection diaphragm in a transmission scanning near-field optical microscopy (SNOM). This originates from the change of the approach curves. Such contrast reversal phenomenon is used to distinguish the artifact signal from the true optical signal of the SNOM image. We also show that continuously changing the diaphragm to a proper diameter can greatly reduce topography artifacts.展开更多
By using scanning polarization force microscopy,the deliquescence process and the atomic steps on the cleavage surface of CaCO3 in air were studied in situ.Under an exposure to medium umidity(-57%),the sloiw step move...By using scanning polarization force microscopy,the deliquescence process and the atomic steps on the cleavage surface of CaCO3 in air were studied in situ.Under an exposure to medium umidity(-57%),the sloiw step movement has been observed.展开更多
Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light funda-...Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light funda- mentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample's thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample's local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM's superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy,which will become a critical technique for characterizing novel energy materials.展开更多
基金Supported by the National Natural Science Foundation of China under grant Nos 90206003, 10374005, 10434020, 10328407 and 90101027, the National Key Basic Research Special Foundation of China under grant No TG1999075207, the Research Fund for the Doctoral Program of Higher Education under Grant No 20040001012, and the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry.
文摘We demonstrate the contrast reversal behaviour of topography artifacts by changing the diameter of the collection diaphragm in a transmission scanning near-field optical microscopy (SNOM). This originates from the change of the approach curves. Such contrast reversal phenomenon is used to distinguish the artifact signal from the true optical signal of the SNOM image. We also show that continuously changing the diaphragm to a proper diameter can greatly reduce topography artifacts.
文摘By using scanning polarization force microscopy,the deliquescence process and the atomic steps on the cleavage surface of CaCO3 in air were studied in situ.Under an exposure to medium umidity(-57%),the sloiw step movement has been observed.
文摘Vibrational spectroscopy is one of the key instrumentations that provide non-invasive investigation of structural and chemical composition for both organic and inorganic materials. However, diffraction of light funda- mentally limits the spatial resolution of far-field vibrational spectroscopy to roughly half the wavelength. In this article, we thoroughly review the integration of atomic force microscopy (AFM) with vibrational spectroscopy to enable the nanoscale characterization of emerging energy materials, which has not been possible with far-field optical techniques. The discussed methods utilize the AFM tip as a nanoscopic tool to extract spatially resolved electronic or molecular vibrational resonance spectra of a sample illuminated by a visible or infrared (IR) light source. The absorption of light by electrons or individual functional groups within molecules leads to changes in the sample's thermal response, optical scattering, and atomic force interactions, all of which can be readily probed by an AFM tip. For example, photothermal induced resonance (PTIR) spectroscopy methods measure a sample's local thermal expansion or temperature rise. Therefore, they use the AFM tip as a thermal detector to directly relate absorbed IR light to the thermal response of a sample. Optical scattering methods based on scanning near-field optical microscopy (SNOM) correlate the spectrum of scattered near-field light with molecular vibrational modes. More recently, photo-induced force microscopy (PiFM) has been developed to measure the change of the optical force gradient due to the light absorption by molecular vibrational resonances using AFM's superb sensitivity in detecting tip-sample force interactions. Such recent efforts successfully breech the diffraction limit of light to provide nanoscale spatial resolution of vibrational spectroscopy,which will become a critical technique for characterizing novel energy materials.