期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于改进EEMD的高压断路器振声联合故障诊断方法 被引量:48
1
作者 张佩 赵书涛 +1 位作者 申路 赵现平 《电力系统保护与控制》 EI CSCD 北大核心 2014年第8期77-81,共5页
高压断路器是电力系统中关键的控制和保护设备,针对其故障诊断方法的不足之处,将振声数据级融合和特征级融合应用于高压断路器故障诊断方法。振声特征级融合诊断方法首先将采集到的声波信号通过快速核独立分量分析(Fast KICA)实现盲源... 高压断路器是电力系统中关键的控制和保护设备,针对其故障诊断方法的不足之处,将振声数据级融合和特征级融合应用于高压断路器故障诊断方法。振声特征级融合诊断方法首先将采集到的声波信号通过快速核独立分量分析(Fast KICA)实现盲源分离处理,其次利用改进集合经验模式分解(EEMD)提取振动信号和声波信号的特征向量。振声数据级融合诊断方法首先构建振声联合图像,其次利用改进的BEEMD提取特征向量。最后将两种方法提取的特征向量输入支持向量机模型(SVM)进行故障诊断,实验结果表明,所提方法诊断高压断路器故障能取得良好的效果。 展开更多
关键词 高压断路器 振声数据级融合 振声特征级融合 改进EEMD分解 改进BEEMD分解 支持向量机
下载PDF
融合多特征的语音情感识别方法 被引量:9
2
作者 王怡 王黎明 柴玉梅 《小型微型计算机系统》 CSCD 北大核心 2022年第6期1232-1239,共8页
语音情感识别已经成为下一代人机交互技术的重要组成部分,从语音信号中提取与情感相关的特征是语音情感识别的重要挑战.针对单一特征在情感识别中准确度不高的问题,该文提出了特征级-决策级融合的方法融合声学特征和语义特征进行情感识... 语音情感识别已经成为下一代人机交互技术的重要组成部分,从语音信号中提取与情感相关的特征是语音情感识别的重要挑战.针对单一特征在情感识别中准确度不高的问题,该文提出了特征级-决策级融合的方法融合声学特征和语义特征进行情感识别.首先提取声学特征,包括:1)低层次手工特征集,包括基于谱相关、音质、能量、基频等相关特征,以及基于低层次特征的高级统计特征;2)DNN提取的谱相关特征的深度特征;3)CNN提取的基于Filter_bank特征的深度特征.并且使用基于Listen-Attend-Spell(LAS)模型的语音识别模块提取语义特征.然后将声学特征中的3类特征与语义特征进行特征级融合,在确定融合特征的先后顺序时引入了构造哈夫曼树的方法.最后得到融合后特征和原始4类特征各自的情感识别结果,在结果之上进行决策级融合,使用此方法在IEMOCAP数据集中分类准确度可达76.2%. 展开更多
关键词 语音情感识别 声学特征 语义特征 特征级-决策级融合
下载PDF
基于多特征融合与改进QPSO-RVM的万能式断路器故障振声诊断方法 被引量:26
3
作者 孙曙光 于晗 +2 位作者 杜太行 王景芹 赵黎媛 《电工技术学报》 EI CSCD 北大核心 2017年第19期107-117,共11页
为可靠地进行万能式断路器机械故障诊断,在基于振动信号故障诊断的基础上,提出了一种多特征融合与改进量子粒子群(QPSO)优化的相关向量机(RVM)相结合的万能式断路器分合闸故障振声诊断方法。首先,对振声信号进行小波包软硬阈值结合去噪... 为可靠地进行万能式断路器机械故障诊断,在基于振动信号故障诊断的基础上,提出了一种多特征融合与改进量子粒子群(QPSO)优化的相关向量机(RVM)相结合的万能式断路器分合闸故障振声诊断方法。首先,对振声信号进行小波包软硬阈值结合去噪预处理,并利用互补总体经验模态分解算法对处理后的振声信号进行分解,提取固有模态函数能量系数、样本熵、功率谱熵,并组成多特征参数;然后,通过组合核函数核主元分析对多特征参数降维,并将其特征融合组成特征向量作为RVM的输入,解决单一特征识别断路器分合闸故障的低准确率和低稳定性;最后,利用改进QPSO优化分类模型参数,建立基于RVM的次序二叉树模型对断路器故障进行辨识。实验结果表明,该方法能有效提升不同故障状态下诊断结果的可靠性。 展开更多
关键词 万能式断路器 故障诊断 振声特征融合 互补总体经验模态分解 改进量子粒子群相关向量机
下载PDF
基于多类别特征融合的水声目标噪声识别分类技术 被引量:5
4
作者 张少康 王超 孙芹东 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第2期366-376,共11页
目标噪声信号作为当前水声目标识别的主要信号源之一,由于目标信号来源单一,难以像多传感器探测不同角度表征目标特性,导致目标识别分类正确率低、虚警率高,严重制约水声探测系统功能的发挥。针对这一问题,采用长短时记忆网络,建立多层L... 目标噪声信号作为当前水声目标识别的主要信号源之一,由于目标信号来源单一,难以像多传感器探测不同角度表征目标特性,导致目标识别分类正确率低、虚警率高,严重制约水声探测系统功能的发挥。针对这一问题,采用长短时记忆网络,建立多层LSTM水声目标噪声特征提取模型,学习提取目标噪声时域包络、DEMON线谱、梅尔倒谱系数等信息特征,构建多类别特征子集;在此基础之上,建立了基于多类别特征子集的特征级融合识别分类模型和基于D-S证据理论的决策级融合识别分类模型;利用样本库数据对上述模型进行了测试,对比多类别特征融合判别与单一类别特征识别分类的差异,并使用港池相关试验数据对上述模型进行了测试验证。测试结果表明,提出的基于多类别特征融合的水声目标噪声智能识别分类方法判别效果更好,对水声目标噪声信号识别分类的正确率和虚警率等相关指标均优于单一类别特征判别方法。 展开更多
关键词 水声目标识别 水声目标噪声 多类别特征融合 特征级融合 决策级融合
下载PDF
多振动信号的时频相干多分形特征提取 被引量:1
5
作者 任海锋 潘宏侠 《振动.测试与诊断》 EI CSCD 北大核心 2018年第6期1114-1121,1288,共9页
为充分利用多个同步采样的振动信号进行机械设备的故障诊断,提出了搭建多振动信号时频相干网络并提取其多分形特征的方法。首先,将每个振动信号作为一个节点,根据所关心的物理问题,按适当的方式将各个节点连接成网;其次,对网络中相邻的... 为充分利用多个同步采样的振动信号进行机械设备的故障诊断,提出了搭建多振动信号时频相干网络并提取其多分形特征的方法。首先,将每个振动信号作为一个节点,根据所关心的物理问题,按适当的方式将各个节点连接成网;其次,对网络中相邻的每对节点做交叉小波变换,得到时频相干谱,借助小波领袖来估计时频相干谱的多分形谱,用曲线拟合的方法来提取多分形谱的形态特征;最后,利用特征融合与维数约简方法,对已得到的所有特征进行融合和降维,从而得到整个网络的最终特征。该方法给出了一个提取多振动信号时频相干多分形特征的框架,并在某高射机枪自动机的裂纹故障诊断中取得了成功应用,具有广泛的适用范围。 展开更多
关键词 故障诊断 时频分析 特征提取 数据级融合 振动 相干 多分形
下载PDF
融合声振信号与可见近红外透射光谱的苹果轻度霉心病检测
6
作者 谷家辉 赖丽思 +1 位作者 王凯 张慧 《食品科学》 EI CAS 2024年第23期259-267,共9页
针对单一方法对苹果轻度霉心病检测精度较低的问题,提出基于近红外透射光谱和声振技术的异源信息融合方法,以提升对苹果轻度霉心病的判别能力。针对近红外光谱信号,首先分析不同预处理和特征提取方法对建模效果的影响,完成光谱特征波段... 针对单一方法对苹果轻度霉心病检测精度较低的问题,提出基于近红外透射光谱和声振技术的异源信息融合方法,以提升对苹果轻度霉心病的判别能力。针对近红外光谱信号,首先分析不同预处理和特征提取方法对建模效果的影响,完成光谱特征波段的选择。针对声振信号,利用YSV工程测试与信号分析软件和Pearson相关系数优选7个时域特征。随后,通过特征拼接将光谱特征波段与时域特征组成融合特征向量,分别采用卷积神经网络(convolutional neural networks,CNN)、长短时记忆网络(long short-term memory,LSTM)和CNN-LSTM基于单一源特征和融合特征构建判别模型。通过模型性能分析,融合了近红外透射光谱15个特征波段与7个时域特征的CNN-LSTM组合模型对于轻度霉心病的判别性能最优,测试集的准确率、召回率、特异性和F1分数分别达到了98.31%、97.06%、97.06%和97.90%。实验结果证明本研究提出的可见近红外透射光谱与声振信号特征融合方法可以有效提高苹果轻度霉心病的判别准确率。 展开更多
关键词 可见近红外透射光谱 声振信号 苹果霉心病 特征融合 卷积神经网络-长短时记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部