期刊文献+
共找到93,741篇文章
< 1 2 250 >
每页显示 20 50 100
A Review on Vibration Control of Multiple Cylinders Subjected to FlowInduced Vibrations
1
作者 XU Wan-hai MA Ye-xuan 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期183-197,共15页
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ... The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods. 展开更多
关键词 flow-induced vibration vibration control multiple cylinders TANDEM side-by-side staggered
下载PDF
Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system
2
作者 Jinghu TANG Chaofeng LI +1 位作者 Jin ZHOU Zhiwei WU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期873-890,共18页
The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are a... The modeling and self-excited vibration mechanism in the magnetic levitation-collision interface coupling system are investigated.The effects of the control and interface parameters on the system's stability are analyzed.The frequency range of self-excited vibrations is investigated from the energy point of view.The phenomenon of self-excited vibrations is elaborated with the phase trajectory.The corresponding control strategies are briefly analyzed with respect to the vibration mechanism.The results show that when the levitation objects collide with the mechanical interface,the system's vibration frequency becomes larger with the decrease in the collision gap;when the vibration frequency exceeds the critical frequency,the electromagnetic system continues to provide energy to the system,and the collision interface continuously dissipates energy so that the system enters the self-excited vibration state. 展开更多
关键词 magnetic levitation coupling system self-excited vibration mechanical interface vibration frequency
下载PDF
Suppression of low-frequency ultrasound broadband vibration using star-shaped single-phase metamaterials
3
作者 Rui Zhao Jian Zheng +4 位作者 Jin Guo Yunbo Shi Hengzhen Feng Jun Tang Jun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期217-224,共8页
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr... In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment. 展开更多
关键词 Star-shaped metamaterials BROADBAND vibration attenuation Low-frequency ultrasound vibration Transmission loss
下载PDF
Wind-Vortex-Induced Vibrations of a Deepwater Jacket Pipe and Vibration Suppression Using a Nonlinear Energy Sink
4
作者 LIU Liqin YU Yongjun CHEN Yiqun 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期633-642,共10页
The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position ... The purpose of this study is to investigate the suppression effect of a nonlinear energy sink(NES)on the wind-vortex-induced pipe vibration and explore the influence of damping,stiffness,and NES installation position on the suppression effect.In this work,the wind-vortex-induced vibration of an elastic pipe of a deepwater jacket was studied,and vibrations were suppressed by using an NES.A van der Pol wake oscillator was used to simulate vortex-induced force,and the dynamic equation of the pipe considering the NES was established.The Galerkin method was applied to discretize the motion equation,and the vortex-induced vibration(VIV)of the pipe at reduced wind speeds was numerically analyzed.The novelty of this research is that particle swarm optimization was used to optimize the parameters of the NES to improve vibration suppression.The influence of the installation position,nonlinear stiffness,and damping parameters of the NES on vibration suppression was analyzed.Results showed that the optimized parameter combinations of the NES can effectively reduce wind-vortex-induced pipe vibration.The installation position of the NES had a significant effect on vibration suppression,and the midpoint of the pipe was the optimal NES installation position.An increase in stiffness or a 10% decrease in damping may cause vibration suppression failure.The results of this study provide some guidance for VIV suppression in deepwater jacket pipes. 展开更多
关键词 deepwater jacket wind-vortex-induced vibration NES PSO vibration suppression effect analysis
下载PDF
Event-Triggered Bipartite Consensus Tracking and Vibration Control of Flexible Timoshenko Manipulators Under Time-Varying Actuator Faults
5
作者 Xiangqian Yao Hao Sun +1 位作者 Zhijia Zhao Yu Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1190-1201,共12页
For bipartite angle consensus tracking and vibration suppression of multiple Timoshenko manipulator systems with time-varying actuator faults,parameter and modeling uncertainties,and unknown disturbances,a novel distr... For bipartite angle consensus tracking and vibration suppression of multiple Timoshenko manipulator systems with time-varying actuator faults,parameter and modeling uncertainties,and unknown disturbances,a novel distributed boundary event-triggered control strategy is proposed in this work.In contrast to the earlier findings,time-varying consensus tracking and actuator defects are taken into account simultaneously.In addition,the constructed event-triggered control mechanism can achieve a more flexible design because it is not required to satisfy the input-to-state condition.To achieve the control objectives,some new integral control variables are given by using back-stepping technique and boundary control.Moreover,adaptive neural networks are applied to estimate system uncertainties.With the proposed event-triggered scheme,control inputs can reduce unnecessary updates.Besides,tracking errors and vibration states of the closed-looped network can be exponentially convergent into some small fields,and Zeno behaviors can be excluded.At last,some simulation examples are given to state the effectiveness of the control algorithms. 展开更多
关键词 vibration satisfy BIPARTITE
下载PDF
Distinct vibrational signatures and complex phase behavior in metallic oxygen
6
作者 Philip Dalladay-Simpson Bartomeu Monserrat +1 位作者 Li Zhang Federico Gorelli 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期4-11,共8页
Evidence for metallization in dense oxygen has been reported for over 30 years[Desgreniers et al.,J.Phys.Chem.94,1117(1990)]at a now routinely accessible 95 GPa[Shimizu et al.,Nature 393,767(1998)].However,despite the... Evidence for metallization in dense oxygen has been reported for over 30 years[Desgreniers et al.,J.Phys.Chem.94,1117(1990)]at a now routinely accessible 95 GPa[Shimizu et al.,Nature 393,767(1998)].However,despite the longevity of this result and the technological advances since,the nature of the metallic phase remains poorly constrained[Akahama et al.,Phys.Rev.Lett.74,4690(1995);Goncharov et al.,Phys.Rev.B 68,224108(2003);Ma,Phys.Rev.B 76,064101(2007);and Weck et al.,Phys.Rev.Lett.102,255503(2009)].In this work,through Raman spectroscopy,we report the distinct vibrational characteristics of metallicζ-O_(2) from 85 to 225 GPa.In comparison with numerical simulations,wefind reasonable agreement with the candidate structure up to about 150 GPa.At higher pressures,the C2/mstructure is found to be unstable and incompatible with experimental observations.Alternative candidate structures,and Ci,with C2/m C2/conly two molecules in the primitive unit cell,are found to be stable and more compatible with measurements above 175 GPa,indicative of the dissociation of(O_(2))4 units.Further,we report and discuss a strong hysteresis and metastability with the precursory phaseϵ-O_(2).Thesefindings will reinvigorate experimental and theoretical work into the dense oxygen system,which will have importance for oxygen-bearing chemistry,prevalent in the deep Earth,as well as fundamental physics. 展开更多
关键词 METALLIC phase vibrationAL
下载PDF
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
7
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
下载PDF
Application of the CatBoost Model for Stirred Reactor State Monitoring Based on Vibration Signals
8
作者 Xukai Ren Huanwei Yu +3 位作者 Xianfeng Chen Yantong Tang Guobiao Wang Xiyong Du 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期647-663,共17页
Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in th... Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault. 展开更多
关键词 Stirred reactor fault diagnosis vibration signal CatBoost
下载PDF
Review of the Tuned Mass Damper Inerter(TMDI)in Energy Harvesting and Vibration Control:Designs,Analysis and Applications
9
作者 Xiaofang Kang Qiwen Huang +3 位作者 Zongqin Wu Jianjun Tang Xueqin Jiang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2361-2398,共38页
Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends thro... Tuned mass damper inerter(TMDI)is a device that couples traditional tuned mass dampers(TMD)with an inertial device.The inertial device produces resistance proportional to the relative acceleration at its two ends through its“inertial”constant.Due to its unique mechanical properties,TMDI has received widespread attention and application in the past twenty years.As different configurations are required in different practical situations,TMDI is still active in the research on vibration control and energy harvesting in structures.This paper provides a comprehensive review of the research status of TMDI.This work first examines the generation and important vibration control characteristics of TMDI.Then,the energy harvesting performance of electromagnetic tuned mass damper inerter(EM-TMDI)is discussed.This work emphasizes the formation of a passive dynamic vibration absorber by coupling traditional TMD with inertial devices.This paper also summarizes the design and implementation of optimal vibration control and energy harvesting for TMDI.Furthermore,this paper details the applications of TMDI in the fields of bridges and building engineering.Finally,this paper summarizes the necessity of research on tuned mass-damper-inertia,the challenges faced currently,and future research directions,such as control of parameters in electromagnetic energy harvesting TMDI systems and low-cost TMDI. 展开更多
关键词 TMDI EM-TMDI energy harvesting vibration control inertial device
下载PDF
Effects of Sinusoidal Vibration of Crystallization Roller on Composite Microstructure of Ti/Al Laminated Composites by Twin-Roll Casting
10
作者 李励 杜凤山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期196-205,共10页
A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/... A new,innovative vibration cast-rolling technology of “electromagnetic stirring+dendrite breaking+asynchronous rolling” was proposed with the adoption of sinusoidal vibration of crystallization roller to prepare Ti/Al laminated composites,and the effect of sinusoidal vibration of crystallization roller on composite microstructure was investigated in detail.The results show that the metallurgical bonding of titanium and aluminum is realized by mesh interweaving and mosaic meshing,instead of transition bonding by forming metal compound layer.The meshing depth between titanium and aluminum layers (6.6μm) of cast-rolling materials with strong vibration of crystallization roller (amplitude 0.87 mm,vibration frequency 25 Hz) is doubled compared with that of traditional cast-rolling materials (3.1μm),and the composite interfacial strength(27.0 N/mm) is twice as high as that of traditional cast-rolling materials (14.9 N/mm).This is because with the action of high-speed superposition of strong tension along the rolling direction,strong pressure along the width direction and rolling force,the composite linearity evolves from "straight line" with traditional casting-rolling to "curved line",and the depth and number of cracks in the interface increases greatly compared with those with traditional cast-rolling,which leads to the deep expansion of the meshing area between interfacial layers and promotes the stable enhancement of composite quality. 展开更多
关键词 laminated composites sinusoidal vibration composite microstructure
下载PDF
Experimental Study on Vortex-Induced Vibration of Rough Risers with Coupling Interference Effect Under Side-by-Side Arrangement
11
作者 HU Ze-bo LIU Zhen +5 位作者 LI Peng GUO Hai-yan WANG Shu-bing REN Xiao-hui HOU Hao WANG Ye-shuo 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期18-28,共11页
A vortex-induced vibration(VIV)experiment of rough risers with coupling interference effect under a side-by-side arrangement was carried out in a wave-current combined flume.The roughness of the riser was characterize... A vortex-induced vibration(VIV)experiment of rough risers with coupling interference effect under a side-by-side arrangement was carried out in a wave-current combined flume.The roughness of the riser was characterized by arranging different specifications of surface attachments on the surface of the riser.Rough risers with three different roughnesses were arranged side by side with smooth risers to explore the VIV response of the riser under the combined action of roughness and interference effect,and to reveal the coupling mechanism between roughness and interference effect.The experimental results show that,compared with that of a smooth riser,the VIV of a rough riser under the coupling interference effect has a wider"lock-in"region,and the displacement decreases more significantly at a high reduced velocity,which is more likely to excite higher-order modes and frequency responses.In addition,the displacement response and frequency response of the smooth riser are not significantly affected by wake interference from the rough riser,which is caused by the decrease of the wake region due to the delay of the boundary layer separation point of the rough riser. 展开更多
关键词 marine riser vortex-induced vibration side-by-side arrangement ROUGHNESS interference effect
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
12
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
A critical review of wheel/rail high frequency vibration-induced vibration fatigue of railway bogie in China
13
作者 Xingwen Wu Zhenxian Zhang +7 位作者 Wubin Cai Ningrui Yang Xuesong Jin Ping Wang Zefeng Wen Maoru Chi Shuling Liang Yunhua Huang 《Railway Sciences》 2024年第2期177-215,共39页
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ... Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration. 展开更多
关键词 Wheel/rail high frequency vibration vibration fatigue Railway bogie Fatigue damage assessment
下载PDF
Low-frequency hybridized excess vibrations of two-dimensional glasses
14
作者 付立存 郑一鸣 王利近 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期550-555,共6页
One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight i... One hallmark of glasses is the existence of excess vibrational modes at low frequenciesωbeyond Debye’s prediction.Numerous studies suggest that understanding low-frequency excess vibrations could help gain insight into the anomalous mechanical and thermodynamic properties of glasses.However,there is still intensive debate as to the frequency dependence of the population of low-frequency excess vibrations.In particular,excess modes could hybridize with phonon-like modes and the density of hybridized excess modes has been reported to follow D_(exc)(ω)~ω^(2)in 2D glasses with an inverse power law potential.Yet,the universality of the quadratic scaling remains unknown,since recent work suggested that interaction potentials could influence the scaling of the vibrational spectrum.Here,we extend the universality of the quadratic scaling for hybridized excess modes in 2D to glasses with potentials ranging from the purely repulsive soft-core interaction to the hard-core one with both repulsion and attraction as well as to glasses with significant differences in density or interparticle repulsion.Moreover,we observe that the number of hybridized excess modes exhibits a decrease in glasses with higher density or steeper interparticle repulsion,which is accompanied by a suppression of the strength of the sound attenuation.Our results indicate that the density bears some resemblance to the repulsive steepness of the interaction in influencing low-frequency properties. 展开更多
关键词 density of states vibrational modes sound attenuation two-dimensional glasses
下载PDF
Torque effect on vibration behavior of high-speed train gearbox under internal and external excitations
15
作者 Yue Zhou Xi Wang +5 位作者 Hongbo Que Rubing Guo Xinhai Lin Siqin Jin Chengpan Wu Yu Hou 《Railway Engineering Science》 EI 2024年第2期229-243,共15页
The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavio... The high-speed train transmission system,experiencing both the internal excitation originating from gear meshing and the external excitation originating from the wheel-rail interaction,exhibits complex dynamic behavior in the actual service environment.This paper focuses on the gearbox in the high-speed train to carry out the bench test,in which various operat-ing conditions(torques and rotation speeds)were set up and the excitation condition covering both internal and external was created.Acceleration responses on multiple positions of the gearbox were acquired in the test and the vibration behavior of the gearbox was studied.Meanwhile,a stochastic excitation modal test was also carried out on the test bench under different torques,and the modal parameter of the gearbox was identified.Finally,the sweep frequency response of the gearbox under gear meshing excitation was analyzed through dynamic modeling.The results showed that the torque has an attenuating effect on the amplitude of gear meshing frequency on the gearbox,and the effect of external excitation on the gearbox vibration cannot be ignored,especially under the rated operating condition.It was also found that the torque affects the modal param-eter of the gearbox significantly.The torque has a great effect on both the gear meshing stiffness and the bearing stiffness in the transmission system,which is the inherent reason for the changed modal characteristics observed in the modal test and affects the vibration behavior of the gearbox consequently. 展开更多
关键词 High-speed train GEARBOX Bench test vibration behavior Modal identification
下载PDF
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink
16
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Ab initio potential energy surface and anharmonic vibration spectrum of NF_(3)^(+)
17
作者 陈艳南 徐建刚 +3 位作者 范江鹏 马双雄 郭甜 张云光 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期327-333,共7页
Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction... Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory. 展开更多
关键词 ab initio methods potential energy surfaces vibration frequencies coupled resonance infrared spectra
下载PDF
Fault Identification for Shear-Type Structures Using Low-Frequency Vibration Modes
18
作者 Cuihong Li Qiuwei Yang Xi Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2769-2791,共23页
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o... Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice. 展开更多
关键词 Fault diagnosis shear steel structure vibration mode dynamic flexibility frequency sensitivity
下载PDF
Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations
19
作者 Zhoujie Zhu Gang Wang +3 位作者 Qingquan Liu Guojun Wang Rui Dong Dayong Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期625-639,共15页
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform... Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method. 展开更多
关键词 Wind turbine ice-induced vibration dynamic response equivalent embedded method
下载PDF
An active high-static-low-dynamic-stiffness vibration isolator with adjustable buckling beams:theory and experiment
20
作者 Kefan XU Muqing NIU +1 位作者 Yewei ZHANG Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期425-440,共16页
High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers... High-static-low-dynamic-stiffness(HSLDS)vibration isolators with buckling beams have been widely used to isolate external vibrations.An active adjustable device composed of proportion integration(PI)active controllers and piezoelectric actuators is proposed for improving the negative stiffness stroke of buckling beams.A nonlinear output frequency response function is used to analyze the effect of the vibration reduction.The prototype of the active HSLDS device is built,and the verification experiment is conducted.The results show that compared with the traditional HSLDS vibration isolator,the active HSLDS device can broaden the isolation frequency bandwidth,and effectively reduce the resonant amplitude by adjusting the active control parameters.The maximum vibration reduction rate of the active HSLDS vibration isolator can attain 89.9%,and the resonant frequency can be reduced from 31.08 Hz to 13.28 Hz.Therefore,this paper devotes to providing a new design scheme for enhanced HSLDS vibration isolators. 展开更多
关键词 active control high-static-low-dynamic-stiffness(HSLDS) vibration isola-tor dynamic analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部