Speckle interferometry is an efficient method to analyze a vibration. In certain conditions, this technique has some outstanding advantage, and need not strict shock--proof condition, compared with the holographic met...Speckle interferometry is an efficient method to analyze a vibration. In certain conditions, this technique has some outstanding advantage, and need not strict shock--proof condition, compared with the holographic method for measuring vibration. Therefore,it is suitable to analyze a vibration with a large amplitude.Real-time interferometry is a rapid and simple method for measuring vibration of a body, gives speckle pattern containing amplitude distribution of body-surface. By means of time-averaged method, the speckle pattern is recorded in Fourier transform plane, or vibration lines are seen directly with eyes, so as to analyze efficiently amplitude, phase, and model of a vibration. This paper deduces the intensity distribution function with real-time method, and gives experimental demonstration of vibration body-the vibration lines with different frequencies.展开更多
This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influ...This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.展开更多
The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a g...The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure.展开更多
Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural f...Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural fatigue damage can occur,and thus,a significant problem involves effectively evaluating and mitigating vibration impact on historic buildings while developing a rail transit system.In the present study,train-induced vibration impact and dynamic behavior of Probhutaratna pagoda in the suburb of Beijing,which has a history of approximately 1000 years,was investigated.To examine the dynamic behavior of the Probhutaratna pagoda and determine the weakest position in its architectural damage under train loads,its dynamic characteristics were measured.The free vibration modes were identified based on the dynamic measurement results.Subsequently,a finite element(FE)model of the Probhutaratna pagoda was constructed and the models and train-induced structural responses were compared with measured results.Finally,the structural dynamic responses to moving train loads were analyzed in detail.The results indicate the following conclusions.(1)The dominant frequency of the ambient vibration is below 4 Hz,and the dominant frequency of the train-induced vibration is between 8 and 16 Hz.(2)The first,second,and third order natural frequencies are 1,3.25,and 6 Hz,respectively,in the west-east direction,and are 1,3.25,and 6.25 Hz,respectively,in the north-south direction.(3)The two weakest locations(A and B)of the Probhutaratna pagoda are observed at the spire bottom and west gate of the first floor.At location A,the maximum principal stress reached 243.6 N/m^2 and the corresponding maximum tensile strain reached 3.74×10^-7.展开更多
With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the uns...With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.展开更多
Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being...Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits.展开更多
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t...Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.展开更多
A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur,...A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.展开更多
In this paper, the method of vibration measurement and modal analysis for AM50 Tunneller machine is presented. When the machine was used for cutting man made coal bed and real coal bed, the vibration of the machine wa...In this paper, the method of vibration measurement and modal analysis for AM50 Tunneller machine is presented. When the machine was used for cutting man made coal bed and real coal bed, the vibration of the machine was measured and the results of signal analysis show that the vibration characteristics under the two kinds of working situations are similar. The modal model of the machine is established, and then, the intrinsic vibration characteristics of AM50 tunneller are investigated by means of the method of experimental modal analysis. The vibration response simulation under a set of loading spectra measured is carried out by force response simulation software.展开更多
Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measureme...Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measurement system of a π-phase shifted Distributed feedback (DFB) fiber laser is introduced. An all-fiberized configuration Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped DFB fiber laser was used as light source, in which an active π-phase shifted fiber Bragg grating (FBG) was wrote on Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped fiber. Using this, it can easily get a single-mode lasing with narrow linewidth. Experimental results demonstrate that the amplitude of vibration can be achieved down to λ/5 without any modulation parts while utilizing the reflecting mirror. It is in good agreement with the theoretical analysis and very helpful in proving sensitivity and stability of the measurement system. In addition, remote vibration measurement with a distance of 20 km is also realized with this system.展开更多
Linear vibration table can provide harmonic accelerations to excite the nonlinear error terms of Pendulous Integrating Gyro Accelerometer(PIGA).Integral precession calibration method is proposed to calibrate PIGA on a...Linear vibration table can provide harmonic accelerations to excite the nonlinear error terms of Pendulous Integrating Gyro Accelerometer(PIGA).Integral precession calibration method is proposed to calibrate PIGA on a linear vibration table in this paper.Based on the precise expressions of PIGA’s inputs,the error calibration model of PIGA is established.Precession angular velocity errors of PIGA are suppressed by integer periodic precession and the errors caused by non-integer periods vibrating are compensated.The complete calibration process,including planning,preparation,PIGA testing,and coefficient identification,is designed to optimize the test operations and evaluate the calibration results.The effect of the main errors on calibration uncertainty is analyzed and the relative sensitivity function is proposed to further optimize the test positions.Experimental and simulation results verify that the proposed 10-position calibration method can improve calibration uncertainties after compensating for the related errors.The order of calibration uncertainties of the second-and third-order coefficients are decreased to 10^(-8)(rad.s^(-1))/g^(2)and 10^(-8)(rad.s^(-1))/g3,respectively.Compared with the other two classical calibration methods,the calibration uncertainties of PIGA’s nonlinear error coefficients can be effectively reduced and the proportional residual errors are decreased less than 3×10-6(rad.s^(-1))/g by using the proposed calibration method.展开更多
Analytical models prepared from field drawings do not generally provide results that match with experimental results.The error may be due to uncertainties in the property of materials,size of members and errors in the...Analytical models prepared from field drawings do not generally provide results that match with experimental results.The error may be due to uncertainties in the property of materials,size of members and errors in the modelling process.It is important to improve analytical models using experimentally obtained data.For the past several years,data obtained from ambient vibration testing have been successfully used in many cases to update and match dynamic behaviors of analytical models with real structures.This paper presents a comparison between artificial neural network(ANN) and eigensensitivity based model updating of an existing multi-story building.A simple spring-mass analytical model,developed from the structural drawings of the building,is considered and the corresponding spring stiffness and lumped mass of all floors are chosen as updating parameters.The advantages and disadvantages of these updating methods are discussed.The advantage is that both methods ensure a physically meaningful model which canbe further employed in determining structural response and health monitoring.展开更多
Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been propose...Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been proposed,but lack theoretical support. The forms of the force signals techniques for signal processing and calculation of aerodynamics are especially problematic. A theoretical study is conducted to investigate the dynamic properties based on models of the draw-rod system and slender rods. The results indicate that the inertia item can be neglected in the rod governing equation;further, the solutions show that the signals of each rod are a combination of aerodynamic signals(with a constant value) and sine signals, which can be verified by experimental shock tunnel results. Signal processing and aerodynamics calculation techniques are also found to be achievable via the flat part of the signals.展开更多
Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and theref...Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and therefore has great theoretical and practical significance. Based on a summary of the connotation and measurement of track stiffness, the state of the art of measurement methods for track stiffness was analyzed systematically. The standstill measurement of track stiffness can be performed with the traditional jack-loading method, impact hammer method, FWD (falling weight deflectometer) method, and track loading vehicle method. Although these methods can be adopted in stiffness measurement for a section of railway track, they are not desirable owning to small range and low efficiency. In the recent 20 years, researchers have proposed many methods like unbalancedloading laser displacement method, deflection basin deformation rate method, and eccentricity excitation method to continuously measure track stiffness; however, these methods have drawbacks like poor accuracy, low speed, and insufficient data analysis. In this work, the merits and demerits of these methods were summarized, and optimization suggestions were presented. Based on the wave transmission mechanism and principle of vibration energy harvesting, an overall conception on continuous measurement of stiffness and long-term stiffness monitoring for special sections was proposed.展开更多
With the aid of non-contact measurements of vibrating surfaces through laser scanning,operating deflection shapes(ODSs)with high spatial resolutions can be used to graphically characterize damage in plane structures.A...With the aid of non-contact measurements of vibrating surfaces through laser scanning,operating deflection shapes(ODSs)with high spatial resolutions can be used to graphically characterize damage in plane structures.Although numerous damage identification approaches relying on laser-measured ODSs have been developed for plate-type structures,they cannot be directly applied to circular cylinders due to the gap between equations of motions of plates and circular cylinders.To fill this gap,a novel approach is proposed in this study for damage identification of circular cylinders.Damage-induced discontinuities of the derivatives of ODSs can be used to gra-phically manifest the occurrence of the damage,and characterize the location and size of the damage.The approach is experimentally validated on a specimen of the circular cylinder component,whose out-of-plane ODSs in an inspection region are acquired through laser scanning using a scanning laser vibrometer.The results suggest that the occurrence,location,and size of the internal damage of the circular cylinder can be identified.展开更多
Single-pixel imaging can reconstruct the image of the object when the light traveling from the object to the detector is scattered or distorted.Most single-pixel imaging methods only obtain distribution of transmittan...Single-pixel imaging can reconstruct the image of the object when the light traveling from the object to the detector is scattered or distorted.Most single-pixel imaging methods only obtain distribution of transmittance or reflectivity of the object.Some methods can obtain extra information,such as color and polarization information.However,there is no method that can get the vibration information when the object is vibrating during the measurement.Vibration information is very important,because unexpected vibration often means the occurrence of abnormal conditions.In this Letter,we introduce a method to obtain vibration information with the frequency modulation single-pixel imaging method.This method uses a light source with a special pattern to illuminate the object and analyzes the frequency of the total light intensity signal transmitted or reflected by the object.Compared to other single-pixel imaging methods,frequency modulation single-pixel imaging can obtain vibration information and maintain high signal-to-noise ratio and has potential on finding out hidden facilities under construction or instruments in work.展开更多
The rotating machinery,as a typical example of large and complex mechanical systems,is prone to diversified sorts of mechanical faults,especially on their rotating components.Although they can be collected via vibrati...The rotating machinery,as a typical example of large and complex mechanical systems,is prone to diversified sorts of mechanical faults,especially on their rotating components.Although they can be collected via vibration measurements,the critical fault signatures are always masked by overwhelming interfering contents,therefore difficult to be identified.Moreover,owing to the distinguished time-frequency characteristics of the machinery fault signatures,classical dyadic wavelet transforms(DWTs) are not perfect for detecting them in noisy environments.In order to address the deficiencies of DWTs,a pseudo wavelet system(PWS) is proposed based on the filter constructing strategies of wavelet tight frames.The presented PWS is implemented via a specially devised shift-invariant filterbank structure,which generates non-dyadic wavelet subbands as well as dyadic ones.The PWS offers a finer partition of the vibration signal into the frequency-scale plane.In addition,in order to correctly identify the essential transient signatures produced by the faulty mechanical components,a new signal impulsiveness measure,named spatial spectral ensemble kurtosis(SSEK),is put forward.SSEK is used for selecting the optimal analyzing parameters among the decomposed wavelet subbands so that the masked critical fault signatures can be explicitly recognized.The proposed method has been applied to engineering fault diagnosis cases,in which the processing results showed its effectiveness and superiority to some existing methods.展开更多
The intelligent structural health monitoring method, which uses a fiber Bragg grating (FBG) sensor, is a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for takin...The intelligent structural health monitoring method, which uses a fiber Bragg grating (FBG) sensor, is a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a fiextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.展开更多
A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and...A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.展开更多
文摘Speckle interferometry is an efficient method to analyze a vibration. In certain conditions, this technique has some outstanding advantage, and need not strict shock--proof condition, compared with the holographic method for measuring vibration. Therefore,it is suitable to analyze a vibration with a large amplitude.Real-time interferometry is a rapid and simple method for measuring vibration of a body, gives speckle pattern containing amplitude distribution of body-surface. By means of time-averaged method, the speckle pattern is recorded in Fourier transform plane, or vibration lines are seen directly with eyes, so as to analyze efficiently amplitude, phase, and model of a vibration. This paper deduces the intensity distribution function with real-time method, and gives experimental demonstration of vibration body-the vibration lines with different frequencies.
文摘This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.
基金The author N.I.Giannoccaro received funds from the Department of Innovation Engineering,University of Salento,for acquiring the tool Structural Health Monitoring.
文摘The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring,such as that carried out by a series of accelerometers placed on the structure,is certainly a goal of extreme and current interest.In the present work,the results obtained from the processing of experimental data of a real structure are shown.The analyzed structure is a lattice structure approximately 9 m high,monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels.The data used refer to continuous monitoring that lasted for a total of 1 year,during which minor damage was caused to the structure by alternatively removing some bracings and repositioning them in the structure.Two methodologies detecting damage based on decomposition techniques of the acquired data were used and tested,as well as a methodology combining the two techniques.The results obtained are extremely interesting,as all the minor damage caused to the structure was identified by the processing methods used,based solely on the monitored data and without any knowledge of the real structure being analyzed.The results use 15 acquisitions in environmental conditions lasting 10 min each,a reasonable amount of time to get immediate feedback on possible damage to the structure.
基金National Science Foundation of China under Grant No.51708450。
文摘Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural fatigue damage can occur,and thus,a significant problem involves effectively evaluating and mitigating vibration impact on historic buildings while developing a rail transit system.In the present study,train-induced vibration impact and dynamic behavior of Probhutaratna pagoda in the suburb of Beijing,which has a history of approximately 1000 years,was investigated.To examine the dynamic behavior of the Probhutaratna pagoda and determine the weakest position in its architectural damage under train loads,its dynamic characteristics were measured.The free vibration modes were identified based on the dynamic measurement results.Subsequently,a finite element(FE)model of the Probhutaratna pagoda was constructed and the models and train-induced structural responses were compared with measured results.Finally,the structural dynamic responses to moving train loads were analyzed in detail.The results indicate the following conclusions.(1)The dominant frequency of the ambient vibration is below 4 Hz,and the dominant frequency of the train-induced vibration is between 8 and 16 Hz.(2)The first,second,and third order natural frequencies are 1,3.25,and 6 Hz,respectively,in the west-east direction,and are 1,3.25,and 6.25 Hz,respectively,in the north-south direction.(3)The two weakest locations(A and B)of the Probhutaratna pagoda are observed at the spire bottom and west gate of the first floor.At location A,the maximum principal stress reached 243.6 N/m^2 and the corresponding maximum tensile strain reached 3.74×10^-7.
基金National Natural Science Foundation of China(No.51775377)National Key Research and Development Plan(No.2017YFF0204800)+2 种基金Natural Science Foundation of TianJin City(No.17JCQNJC01100)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Underwater Information and Control(No.6142218081811)
文摘With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.
基金supported by the National Natural Science Foundation of China (10772171 and 10732080)the National Basic Research Program of China (2007CB936803)
文摘Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be reconstructed by Fresnel reconstruction algorithm.The three-dimensional windowed Fourier transform is used to filter noise in phase and extract the instantaneous kinematic parameters of the specimen,such as the displacement,velocity and acceleration.An experiment is conducted on a chloroprene rubber latex membrane.Results demonstrate that the proposed method determines the vibration parameters precisely and enjoys many merits.
基金The work described in this paper was jointly supported by the National Natural Science Foundation of China (51478360, 51323013, and 50978204).
文摘Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.
基金This project is supported by National Natural Science Foundation of China (No. 50375099, No. 50390064)
文摘A novel motion-blur-based method for measuring the angular amplitude of a high-frequency rotational vibration is schemed. The proposed approach combines the active vision concept and the mechanism of motion-from-blur, generates motion blur on the image plane actively by extending exposure time, and utilizes the motion blur information in polar images to estimate the angular amplitude of a high-frequency rotational vibration. This method obtains the analytical results of the angular vibration amplitude from the geometric moments of a motion blurred polar image and an unblurred image for reference. Experimental results are provided to validate the presented scheme.
文摘In this paper, the method of vibration measurement and modal analysis for AM50 Tunneller machine is presented. When the machine was used for cutting man made coal bed and real coal bed, the vibration of the machine was measured and the results of signal analysis show that the vibration characteristics under the two kinds of working situations are similar. The modal model of the machine is established, and then, the intrinsic vibration characteristics of AM50 tunneller are investigated by means of the method of experimental modal analysis. The vibration response simulation under a set of loading spectra measured is carried out by force response simulation software.
文摘Recently, with the rapid development of precision machining, microvibration measurement is required for the manufacturing and installation of parts and components. In this paper, a self-mixing microvibration measurement system of a π-phase shifted Distributed feedback (DFB) fiber laser is introduced. An all-fiberized configuration Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped DFB fiber laser was used as light source, in which an active π-phase shifted fiber Bragg grating (FBG) was wrote on Er<sup>3+</sup>-Yb<sup>3+</sup> co-doped fiber. Using this, it can easily get a single-mode lasing with narrow linewidth. Experimental results demonstrate that the amplitude of vibration can be achieved down to λ/5 without any modulation parts while utilizing the reflecting mirror. It is in good agreement with the theoretical analysis and very helpful in proving sensitivity and stability of the measurement system. In addition, remote vibration measurement with a distance of 20 km is also realized with this system.
文摘Linear vibration table can provide harmonic accelerations to excite the nonlinear error terms of Pendulous Integrating Gyro Accelerometer(PIGA).Integral precession calibration method is proposed to calibrate PIGA on a linear vibration table in this paper.Based on the precise expressions of PIGA’s inputs,the error calibration model of PIGA is established.Precession angular velocity errors of PIGA are suppressed by integer periodic precession and the errors caused by non-integer periods vibrating are compensated.The complete calibration process,including planning,preparation,PIGA testing,and coefficient identification,is designed to optimize the test operations and evaluate the calibration results.The effect of the main errors on calibration uncertainty is analyzed and the relative sensitivity function is proposed to further optimize the test positions.Experimental and simulation results verify that the proposed 10-position calibration method can improve calibration uncertainties after compensating for the related errors.The order of calibration uncertainties of the second-and third-order coefficients are decreased to 10^(-8)(rad.s^(-1))/g^(2)and 10^(-8)(rad.s^(-1))/g3,respectively.Compared with the other two classical calibration methods,the calibration uncertainties of PIGA’s nonlinear error coefficients can be effectively reduced and the proportional residual errors are decreased less than 3×10-6(rad.s^(-1))/g by using the proposed calibration method.
文摘Analytical models prepared from field drawings do not generally provide results that match with experimental results.The error may be due to uncertainties in the property of materials,size of members and errors in the modelling process.It is important to improve analytical models using experimentally obtained data.For the past several years,data obtained from ambient vibration testing have been successfully used in many cases to update and match dynamic behaviors of analytical models with real structures.This paper presents a comparison between artificial neural network(ANN) and eigensensitivity based model updating of an existing multi-story building.A simple spring-mass analytical model,developed from the structural drawings of the building,is considered and the corresponding spring stiffness and lumped mass of all floors are chosen as updating parameters.The advantages and disadvantages of these updating methods are discussed.The advantage is that both methods ensure a physically meaningful model which canbe further employed in determining structural response and health monitoring.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472281 and 11532014)
文摘Accurate aerodynamic measurements in the hypersonic flow of large aircraft models in tunnels have practical significance, but pose a significant challenge. Novel aerodynamic force measurement methods have been proposed,but lack theoretical support. The forms of the force signals techniques for signal processing and calculation of aerodynamics are especially problematic. A theoretical study is conducted to investigate the dynamic properties based on models of the draw-rod system and slender rods. The results indicate that the inertia item can be neglected in the rod governing equation;further, the solutions show that the signals of each rod are a combination of aerodynamic signals(with a constant value) and sine signals, which can be verified by experimental shock tunnel results. Signal processing and aerodynamics calculation techniques are also found to be achievable via the flat part of the signals.
基金supported by the project (51425804) of the National Science Fund for Distinguished Young Scholars of Chinathe National Natural Science Foundation of China (NSFC) under grants U1234201, U1334203, and 51378439
文摘Stiffness is one of the basic performance parameters for railway track. The efficient and accurate stiffness measurement has been considered as the foundation for further development of railway engineering, and therefore has great theoretical and practical significance. Based on a summary of the connotation and measurement of track stiffness, the state of the art of measurement methods for track stiffness was analyzed systematically. The standstill measurement of track stiffness can be performed with the traditional jack-loading method, impact hammer method, FWD (falling weight deflectometer) method, and track loading vehicle method. Although these methods can be adopted in stiffness measurement for a section of railway track, they are not desirable owning to small range and low efficiency. In the recent 20 years, researchers have proposed many methods like unbalancedloading laser displacement method, deflection basin deformation rate method, and eccentricity excitation method to continuously measure track stiffness; however, these methods have drawbacks like poor accuracy, low speed, and insufficient data analysis. In this work, the merits and demerits of these methods were summarized, and optimization suggestions were presented. Based on the wave transmission mechanism and principle of vibration energy harvesting, an overall conception on continuous measurement of stiffness and long-term stiffness monitoring for special sections was proposed.
基金The authors are grateful for the supports from the Changzhou Policy Guidance Plan-International Science and Technology Cooperation(No.CZ20200003)the Anhui International Joint Research Center of Data Diagnosis and Smart Maintenance on Bridge Structures(No.2021AHGHYB01)+1 种基金the Nantong Science and Technology Opening Cooperation Project in 2021(No.BW2021001)the Key R&D Project of Anhui Science and Technology Department(202004b11020026).
文摘With the aid of non-contact measurements of vibrating surfaces through laser scanning,operating deflection shapes(ODSs)with high spatial resolutions can be used to graphically characterize damage in plane structures.Although numerous damage identification approaches relying on laser-measured ODSs have been developed for plate-type structures,they cannot be directly applied to circular cylinders due to the gap between equations of motions of plates and circular cylinders.To fill this gap,a novel approach is proposed in this study for damage identification of circular cylinders.Damage-induced discontinuities of the derivatives of ODSs can be used to gra-phically manifest the occurrence of the damage,and characterize the location and size of the damage.The approach is experimentally validated on a specimen of the circular cylinder component,whose out-of-plane ODSs in an inspection region are acquired through laser scanning using a scanning laser vibrometer.The results suggest that the occurrence,location,and size of the internal damage of the circular cylinder can be identified.
基金supported by the Nanjing University of Posts and Telecommunications(Nos.NY219148 and XK1060919148)Open Research Fund of the State Key Laboratory of Low-Dimensional Quantum Physics(No.KF202003)Jiangsu Provincial Double-Innovation Doctor Program(No.CZ106SC20026).
文摘Single-pixel imaging can reconstruct the image of the object when the light traveling from the object to the detector is scattered or distorted.Most single-pixel imaging methods only obtain distribution of transmittance or reflectivity of the object.Some methods can obtain extra information,such as color and polarization information.However,there is no method that can get the vibration information when the object is vibrating during the measurement.Vibration information is very important,because unexpected vibration often means the occurrence of abnormal conditions.In this Letter,we introduce a method to obtain vibration information with the frequency modulation single-pixel imaging method.This method uses a light source with a special pattern to illuminate the object and analyzes the frequency of the total light intensity signal transmitted or reflected by the object.Compared to other single-pixel imaging methods,frequency modulation single-pixel imaging can obtain vibration information and maintain high signal-to-noise ratio and has potential on finding out hidden facilities under construction or instruments in work.
基金supported financially by the National Natural Science Foundation of China(Grant Nos.51275382 and 11176024)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110201130001)
文摘The rotating machinery,as a typical example of large and complex mechanical systems,is prone to diversified sorts of mechanical faults,especially on their rotating components.Although they can be collected via vibration measurements,the critical fault signatures are always masked by overwhelming interfering contents,therefore difficult to be identified.Moreover,owing to the distinguished time-frequency characteristics of the machinery fault signatures,classical dyadic wavelet transforms(DWTs) are not perfect for detecting them in noisy environments.In order to address the deficiencies of DWTs,a pseudo wavelet system(PWS) is proposed based on the filter constructing strategies of wavelet tight frames.The presented PWS is implemented via a specially devised shift-invariant filterbank structure,which generates non-dyadic wavelet subbands as well as dyadic ones.The PWS offers a finer partition of the vibration signal into the frequency-scale plane.In addition,in order to correctly identify the essential transient signatures produced by the faulty mechanical components,a new signal impulsiveness measure,named spatial spectral ensemble kurtosis(SSEK),is put forward.SSEK is used for selecting the optimal analyzing parameters among the decomposed wavelet subbands so that the masked critical fault signatures can be explicitly recognized.The proposed method has been applied to engineering fault diagnosis cases,in which the processing results showed its effectiveness and superiority to some existing methods.
基金supported by the National Natural Science Foundation of China (Nos. 60727004 and 61077060)the National High Technology Research and Development Program of China (Nos. 2007AA03Z413 and 2009AA06Z203)+1 种基金the International S&T Cooperation Project of MOST of China (No. 2008CR1063)the Key Scientific and Technological Research Project of Shaanxi Province,China (Nos. 20092KC01-19 and 2008ZDGC-14)
文摘The intelligent structural health monitoring method, which uses a fiber Bragg grating (FBG) sensor, is a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a fiextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.
基金Acknowledgment This work was supported by the National Natural Science Foundation of China (Grant Nos. 11474133 and 61235005), Natural Science Foundation of Guangdong Province of China (No. 2014A030310419), and the Guangzhou Key Collaborative Innovation Foundation of China (No.
文摘A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.