In order to improve vibration mills grinding effect and increase productive efficiency, prime factors of vibration mills were gained much attention. The purpose of this study is to reveal product size distribution and...In order to improve vibration mills grinding effect and increase productive efficiency, prime factors of vibration mills were gained much attention. The purpose of this study is to reveal product size distribution and grinding dynamics of vibration mills by orthogonal experi-ments. The metallurgical refractory materials were used as research object. In order to explore the relationships between grinding effect and primary factors, lots of milling experiments were carried out. Based on the results, the conclusions can be summarized: as time runs, the size distri-bution shows exponential trend, and range becomes more and more narrow. Also the quantitative analysis result between grinding effect and primary factors was obtained by non-linear regres-sion: high frequency, high amplitude and low fill ratio can increase grinding speed.展开更多
As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address thes...As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.展开更多
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degradi...BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the dif...To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.展开更多
For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle ...For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle size of 30-50 nm with increased crystallinity and higher specific surface area, predominantly mesoporous and with improved pore diameter distribution. Then, AC nano-particles were incorporated with MnO2 or bismuth-doped MnO2 nano-particles synthesized by sol-gel methods to prepare nano-composite electrode materials for studying their electrochemical performance. The AC nano-particles combined with 10 wt.% bismuth-doped MnO2 nano-particles were found to possess excellent electrochemical property with specific capacitance up to 308 F/g and without obvious attenuation with increasing current. Our method seems to ooen a new way to imorove AC based electrode materials used for clean energy such as suner capacitors.展开更多
In an attempt to improve the current low efficiency and high consumption situation of vibration mills,this paper analyses the chaotic motion characteristics of the system and the movement of vibration mill.The complex...In an attempt to improve the current low efficiency and high consumption situation of vibration mills,this paper analyses the chaotic motion characteristics of the system and the movement of vibration mill.The complex stiffness-dispersion coupling of the system is also studied,so as to investigate the effect of the system’s chaotic motion characteristics on the efficiency improvement and energy consumption reduction.Based on the ADAMS software,this paper establishes a simplified vibration mill mechanical model,analyzes the singularity and stability of the system,and determines the critical speed at which the vibration motor becomes chaotic according to the bifurcation diagram.Then the chaotic state of the grinding machine with sinusoidal variation in its motor speed is studied based on the Poincar´e principle,singular attractor and maximum Lyapunov exponent.Lastly,a 200 h vibration test on diamond powder with an average particle size of 10μm was carried out.Test results under the two operating conditions of variable and constant speeds are compared and analyzed.Our results show that with variable speed the vibration mill achieved higher grinding efficiency but smaller particle grain size.The research elaborated in this paper provides a valuable reference for the engineering application of the chaotic characteristics of vibration mill.展开更多
In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of elec...In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.展开更多
The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great...The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.展开更多
The law of blasting vibration caused by blasting in rock is very complex.Traditional numerical methods cannot well characterize all the influencing factors in the blasting process.The effects of millisecond time,charg...The law of blasting vibration caused by blasting in rock is very complex.Traditional numerical methods cannot well characterize all the influencing factors in the blasting process.The effects of millisecond time,charge length and detonation velocity on the blasting vibration are discussed by analyzing the characteristics of vibration wave generated by finite length cylindrical charge.It is found that in multi-hole millisecond blasting,blasting vibration superimpositions will occur several times within a certain distance from the explosion source due to the propagation velocity difference of P-wave and S-wave generated by a short column charge.These superimpositions will locally enlarge the peak velocity of blasting vibration particle.The magnitude and scope of the enlargement are closely related to the millisecond time.Meanwhile,the particle vibration displacement characteristics of rock under long cylindrical charge is analyzed.The results show that blasting vibration effect would no longer increase when the charge length increases to a certain extent.This indicates that the traditional simple calculation method using the maximum charge weight per delay interval to predict the effect of blasting vibration is unreasonable.Besides,the effect of detonation velocity on blasting vibration is only limited in a certain velocity range.When detonation velocity is greater than a certain value,the detonation velocity almost makes no impact on blasting vibration.展开更多
According to explosion dynamics and elastic wave theory, the models of particle vibration velocity for simultaneous blasting and milliseeond blasting are built. In the models, influential factors such as delay interva...According to explosion dynamics and elastic wave theory, the models of particle vibration velocity for simultaneous blasting and milliseeond blasting are built. In the models, influential factors such as delay interval and charge quantity, are considered. The calculated vibration velocity is compared with the field test results, which shows that the theoretical values are close to the experimental ones. Meanwhile, the particle vibration velocity decreases quickly with time due to the damping of rock mass and has a harmonic motion, and the particle vibration velocity of millisecond blasting has short interval. The superposition of particle vibration velocities may reduce vibration because of wave interference, or magnify the surrounding rock response to the blastinginduced vibration.展开更多
Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain ext...Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain extent. This article proposes to utilize a face-milling machining method in involute gear machining, which can be used to reduce production cost effectively. Cutting vibration generated during cutting machining has a direct effect on the machining accuracy and machined surface quality of workpiece. Therefore, it is desiderated to perform in-depth research regarding this issue. ADAMS software was used to establish a rigid-flexible coupling virtual prototyping model of face-milling gear milling system and a cutting vibration system model. Cutting vibration analysis was performed for face-milling gear by adopting quick sine frequency sweep method, so that the frequency response characteristics of workpiece in three directions X, Y and Z and space were acquired. The research results will provide reference and theoretical foundation for actual application of face-milling gear machining technology.展开更多
The exact measurement of the fill level is the key and basic problem for automatic control and optimized operation of the coal pulverizing system. Because the ball mill pulverizing system is non-linearity, long time d...The exact measurement of the fill level is the key and basic problem for automatic control and optimized operation of the coal pulverizing system. Because the ball mill pulverizing system is non-linearity, long time delay and time-varying, the reliable and effective method for measuring the fill level was lacked at present. In order to reduce the influence by various factors on measuring the fill level and improve the measuring accuracy of the fill level, a novel characteristic variable is proposed. A set of wireless transmission device was designed to record vibration signals, and an accelerometer with high accuracy and large measuring range was mounted directly on the mill shell to pick up the vibration signals from the mill shell. A series of data acquisition experiments under various ball load and water content of coal conditions were conducted in an industrial mill to investigate the relationship between the fill level and the angular position of the maximum vibration point of the mill shell through the analysis of the vibration signals. The analytical result of test data clearly show that the angular position of the maximum vibration point on the mill shell decreases as the fill level increases. At the same time, comparing with the traditional characteristic variable, the feature variable of the fill level proposed in this paper is not subject to the effect of the ball load and water content of coal, which provides a new solution and reliable basis for the accurate measurement of the fill level.展开更多
This paper studies the influence of radial depth on vibration, chip formation and surface roughness during face milling of AISl3O4 austenitic stainless steel with indexable cemented carbide milling cutters. The amplit...This paper studies the influence of radial depth on vibration, chip formation and surface roughness during face milling of AISl3O4 austenitic stainless steel with indexable cemented carbide milling cutters. The amplitude of vibration acceleration increased with the increasing radial depth up to 80 mm. And the domain vibration frequency varied with the radial depth. In this paper, three types of chips were found: C shape, long shape and spiral shape. The minimum surface roughness value occurred when the radial depth equalled 40 mm in the experiment. Irregular changes of chip curl radius and chip thickness could be attributed to different numbers of alternately engaged teeth when the feed and speed were fixed. Surface roughness is related to forced vibration and chip formation. Radial depth with different numbers of alternately engaged teeth could significantly influence the forced vibration, chip formation, and surface roughness.展开更多
In-process damage to a cutting tool degrades the surfacenish of the job shaped by machining and causes a signicantnancial loss.This stimulates the need for Tool Condition Monitoring(TCM)t...In-process damage to a cutting tool degrades the surfacenish of the job shaped by machining and causes a signicantnancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty congurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results.展开更多
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm...With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ...The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.展开更多
Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates wa...Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.展开更多
文摘In order to improve vibration mills grinding effect and increase productive efficiency, prime factors of vibration mills were gained much attention. The purpose of this study is to reveal product size distribution and grinding dynamics of vibration mills by orthogonal experi-ments. The metallurgical refractory materials were used as research object. In order to explore the relationships between grinding effect and primary factors, lots of milling experiments were carried out. Based on the results, the conclusions can be summarized: as time runs, the size distri-bution shows exponential trend, and range becomes more and more narrow. Also the quantitative analysis result between grinding effect and primary factors was obtained by non-linear regres-sion: high frequency, high amplitude and low fill ratio can increase grinding speed.
基金Project supported by the National Natural Science Foundation of China(Nos.12172248,12021002,12302022,and 12132010)the Tianjin Research Program of Application Foundation and Advanced Technology of China(No.22JCQNJC00780)IoT Standards and Application Key Laboratory of the Ministry of Industry and Information Technology of China(No.202306)。
文摘As critical components of aircraft skins and rocket fuel storage tank shells,large thin-walled workpieces are susceptible to vibration and deformation during machining due to their weak local stiffness.To address these challenges,we propose a novel tunable electromagnetic semi-active dynamic vibration absorber(ESADVA),which integrates with a magnetic suction follower to form a followed ESADVA(follow-ESADVA)for mirror milling.This system combines a tunable magnet oscillator with a follower,enabling real-time vibration absorption and condition feedback throughout the milling process.Additionally,the device supports self-sensing and frequency adjustment by providing feedback to a linear actuator,which alters the distance between magnets.This resolves the traditional issue of being unable to directly monitor vibration at the machining point due to space constraints and tool interference.The frequency shift characteristics and vibration absorption performance are comprehensively investigated.Theoretical and experimental results demonstrate that the prototyped follow-ESADVA achieves frequency synchronization with the milling tool,resulting in a vibration suppression rate of approximately 47.57%.Moreover,the roughness of the machined surface decreases by18.95%,significantly enhancing the surface quality.The results of this work pave the way for higher-quality machined surfaces and a more stable mirror milling process.
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金financially supported by the National Natural Science Foundation of China(No.22272151)Public Welfare Technology Application Research Project of Jinhua City,China(No.2023-4-022)。
文摘BiVO_(4)porous spheres modified by ZnO were designed and synthesized using a facile two-step method.The resulting ZnO/BiVO_(4)composite catalysts have shown remarkable efficiency as piezoelectric catalysts for degrading Rhodamine B(RhB)unde mechanical vibrations,they exhibit superior activity compared to pure ZnO.The 40wt%ZnO/BiVO_(4)heterojunction composite displayed the highest activity,along with good stability and recyclability.The enhanced piezoelectric catalytic activity can be attributed to the form ation of an I-scheme heterojunction structure,which can effectively inhibit the electron-hole recombination.Furthermore,hole(h+)and superoxide radical(·O_(2)^(-))are proved to be the primary active species.Therefore,ZnO/BiVO_(4)stands as an efficient and stable piezoelectric catalyst with broad potential application in the field of environmental water pollution treatment.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
文摘To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.
基金Shanghai Nano-technology Special Fund,Grant No.05nm05027Shanghai Education Fund,Grant No.05EE09.
文摘For the first time dry roller vibration milling at room temperature was used to prepare active carbon (AC) nano-particles and to modify MnO2 powder as electrode materials. In 30 min AC was milled to a mean particle size of 30-50 nm with increased crystallinity and higher specific surface area, predominantly mesoporous and with improved pore diameter distribution. Then, AC nano-particles were incorporated with MnO2 or bismuth-doped MnO2 nano-particles synthesized by sol-gel methods to prepare nano-composite electrode materials for studying their electrochemical performance. The AC nano-particles combined with 10 wt.% bismuth-doped MnO2 nano-particles were found to possess excellent electrochemical property with specific capacitance up to 308 F/g and without obvious attenuation with increasing current. Our method seems to ooen a new way to imorove AC based electrode materials used for clean energy such as suner capacitors.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(51375221).
文摘In an attempt to improve the current low efficiency and high consumption situation of vibration mills,this paper analyses the chaotic motion characteristics of the system and the movement of vibration mill.The complex stiffness-dispersion coupling of the system is also studied,so as to investigate the effect of the system’s chaotic motion characteristics on the efficiency improvement and energy consumption reduction.Based on the ADAMS software,this paper establishes a simplified vibration mill mechanical model,analyzes the singularity and stability of the system,and determines the critical speed at which the vibration motor becomes chaotic according to the bifurcation diagram.Then the chaotic state of the grinding machine with sinusoidal variation in its motor speed is studied based on the Poincar´e principle,singular attractor and maximum Lyapunov exponent.Lastly,a 200 h vibration test on diamond powder with an average particle size of 10μm was carried out.Test results under the two operating conditions of variable and constant speeds are compared and analyzed.Our results show that with variable speed the vibration mill achieved higher grinding efficiency but smaller particle grain size.The research elaborated in this paper provides a valuable reference for the engineering application of the chaotic characteristics of vibration mill.
基金Supported by National Science&Technology Pillar Program of China during the 12th Five-Year Plan Period(Product Quality Optimization of Precision Strip and R&D for Key Equipment,Grant No.2015BAF30B01)
文摘In the study of electromechanical coupling vibration of mill main drive system, the influence of electrical system on the mechanical transmission is considered generally, however the research for the mechanism of electromechanical interaction is lacked. In order to research the electromechanical coupling resonance of main drive system on the F3 mill in a plant, the cycloconverter and synchronous motor are modeled and simulated by the MTLAB/SIMUL1NK firstly, simulation result show that the current harmonic of the cycloconverter can lead to the pulsating torque of motor output. Then the natural characteristics of the mechanical drive system are calculated by ANSYS, the result show that the modal frequency contains the component which is close to the coupling vibration frequency of 42Hz. According to the simulation result of the mechanical and electrical system, the closed loop feedback model including the two systems are built, and the mechanism analysis of electromechanical coupling presents that there is the interaction between the current harmonic of electrical system and the speed of the mechanical drive system. At last, by building and computing the equivalent nonlinear dynamics model of the mechanical drive system, the dynamic characteristics of system changing with the stiffness, damping coefficient and the electromagnetic torque are obtained. Such electromechanical interaction process is suggested to consider in research of mill vibration, which can induce strong coupling vibration behavior in the rolling mill drive system.
基金supported by National Natural Science Foundation of China(Grant No.51675440)Fundamental Research Funds for the Central Universities of China(Grant no.3102018gxc025)
文摘The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.
基金Project(50878123)supported by the National Natural Science Foundation of ChinaProject(20113718110002)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(DPMEIKF201307)supported by the Fund of the State key Laboratory of Disaster Prevention&Mitigation of Explosion&Impact(PLA University and Technology),ChinaProject(13BS402)supported by Huaqiao University Research Foundation,China
文摘The law of blasting vibration caused by blasting in rock is very complex.Traditional numerical methods cannot well characterize all the influencing factors in the blasting process.The effects of millisecond time,charge length and detonation velocity on the blasting vibration are discussed by analyzing the characteristics of vibration wave generated by finite length cylindrical charge.It is found that in multi-hole millisecond blasting,blasting vibration superimpositions will occur several times within a certain distance from the explosion source due to the propagation velocity difference of P-wave and S-wave generated by a short column charge.These superimpositions will locally enlarge the peak velocity of blasting vibration particle.The magnitude and scope of the enlargement are closely related to the millisecond time.Meanwhile,the particle vibration displacement characteristics of rock under long cylindrical charge is analyzed.The results show that blasting vibration effect would no longer increase when the charge length increases to a certain extent.This indicates that the traditional simple calculation method using the maximum charge weight per delay interval to predict the effect of blasting vibration is unreasonable.Besides,the effect of detonation velocity on blasting vibration is only limited in a certain velocity range.When detonation velocity is greater than a certain value,the detonation velocity almost makes no impact on blasting vibration.
基金The Programme for New Century Excel-lent Talents in University (No.NCET-06-0649)the Natural Science Foundation of Hubei Province(No.2005ABA303)
文摘According to explosion dynamics and elastic wave theory, the models of particle vibration velocity for simultaneous blasting and milliseeond blasting are built. In the models, influential factors such as delay interval and charge quantity, are considered. The calculated vibration velocity is compared with the field test results, which shows that the theoretical values are close to the experimental ones. Meanwhile, the particle vibration velocity decreases quickly with time due to the damping of rock mass and has a harmonic motion, and the particle vibration velocity of millisecond blasting has short interval. The superposition of particle vibration velocities may reduce vibration because of wave interference, or magnify the surrounding rock response to the blastinginduced vibration.
基金financially supported by Natural Science Foundation of Liaoning Province(20170540778),People's Republic of China
文摘Traditional machining methods, such as gear hobbing, gear shaping and gear milling, etc, are commonly used for cutting machining of gear tooth profile, which cannot meet huge machining demand of gears to a certain extent. This article proposes to utilize a face-milling machining method in involute gear machining, which can be used to reduce production cost effectively. Cutting vibration generated during cutting machining has a direct effect on the machining accuracy and machined surface quality of workpiece. Therefore, it is desiderated to perform in-depth research regarding this issue. ADAMS software was used to establish a rigid-flexible coupling virtual prototyping model of face-milling gear milling system and a cutting vibration system model. Cutting vibration analysis was performed for face-milling gear by adopting quick sine frequency sweep method, so that the frequency response characteristics of workpiece in three directions X, Y and Z and space were acquired. The research results will provide reference and theoretical foundation for actual application of face-milling gear machining technology.
基金supported by National Natural Science Foundation of China (Grant No. 51005047, 51075070)Production and Research Joint Innovation Fund of Jiangsu Province (Grant No. BY2009152)New Doctor Teacher Foundation of Southeast University of China (Grant No. 9202000024)
文摘The exact measurement of the fill level is the key and basic problem for automatic control and optimized operation of the coal pulverizing system. Because the ball mill pulverizing system is non-linearity, long time delay and time-varying, the reliable and effective method for measuring the fill level was lacked at present. In order to reduce the influence by various factors on measuring the fill level and improve the measuring accuracy of the fill level, a novel characteristic variable is proposed. A set of wireless transmission device was designed to record vibration signals, and an accelerometer with high accuracy and large measuring range was mounted directly on the mill shell to pick up the vibration signals from the mill shell. A series of data acquisition experiments under various ball load and water content of coal conditions were conducted in an industrial mill to investigate the relationship between the fill level and the angular position of the maximum vibration point of the mill shell through the analysis of the vibration signals. The analytical result of test data clearly show that the angular position of the maximum vibration point on the mill shell decreases as the fill level increases. At the same time, comparing with the traditional characteristic variable, the feature variable of the fill level proposed in this paper is not subject to the effect of the ball load and water content of coal, which provides a new solution and reliable basis for the accurate measurement of the fill level.
基金Supported by National Science and Technology Major Project of China(No.2009ZX04012-021)Major State Basic Research Development Program of China ("973" Program, No.2009CB724306)
文摘This paper studies the influence of radial depth on vibration, chip formation and surface roughness during face milling of AISl3O4 austenitic stainless steel with indexable cemented carbide milling cutters. The amplitude of vibration acceleration increased with the increasing radial depth up to 80 mm. And the domain vibration frequency varied with the radial depth. In this paper, three types of chips were found: C shape, long shape and spiral shape. The minimum surface roughness value occurred when the radial depth equalled 40 mm in the experiment. Irregular changes of chip curl radius and chip thickness could be attributed to different numbers of alternately engaged teeth when the feed and speed were fixed. Surface roughness is related to forced vibration and chip formation. Radial depth with different numbers of alternately engaged teeth could significantly influence the forced vibration, chip formation, and surface roughness.
文摘In-process damage to a cutting tool degrades the surfacenish of the job shaped by machining and causes a signicantnancial loss.This stimulates the need for Tool Condition Monitoring(TCM)to assist detection of failure before it extends to the worse phase.Machine Learning(ML)based TCM has been extensively explored in the last decade.However,most of the research is now directed toward Deep Learning(DL).The“Deep”formulation,hierarchical compositionality,distributed representation and end-to-end learning of Neural Nets need to be explored to create a generalized TCM framework to perform eciently in a high-noise environment of cross-domain machining.With this motivation,the design of dierent CNN(Convolutional Neural Network)architectures such as AlexNet,ResNet-50,LeNet-5,and VGG-16 is presented in this paper.Real-time spindle vibrations corresponding to healthy and various faulty congurations of milling cutter were acquired.This data was transformed into the time-frequency domain and further processed by proposed architectures in graphical form,i.e.,spectrogram.The model is trained,tested,and validated considering dierent datasets and showcased promising results.
基金Project supported by the National Science Fund for Distinguished Young Scholars of China(No.12025204)the National Natural Science Foundation of China(No.12202038)。
文摘With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U2106223,51979193,52301352)。
文摘The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.
基金Supported by National Key Research and Development Program of China (Grant No.2021YFB3400100)National Natural Science Foundation of China (Grant Nos.52241103,U2241261,52022039)。
文摘Vibration quality is a vital indicator for assessing the progress of modern equipment.The dynamic vibration absorber(DVA)based on the acoustic black hole(ABH)feature is a new passive control method that manipulates waves.It offers efficient energy focalization and broad-spectrum vibration suppression,making it highly promising for applications in large equipment such as aircraft,trains,and ships.Despite previous advancements in ABH-DVA development,certain challenges remain,particularly in ensuring effective coupling with host structures during control.To address these issues,this study proposes a partitioned ABH-featured dynamic vibration absorber(PABH-DVA)with partitions in the radial direction of the disc.By employing a plate as the host structure,simulations and experiments were conducted,demonstrating that the PABH-DVA outperforms the original symmetric ABH-DVA in terms of damping performance.The study also calculated and compared the coupling coefficients of the two ABH-DVAs to uncover the mechanism behind the enhanced damping.Simulation results revealed that the PABH-DVA exhibits more coupled modes,occasionally with lower coupling coefficients than the symmetric ABH-DVA.The influence of frequency ratio and modal mass was further analyzed to explain the reasons behind the PABH-DVA's superior damping performance.Additionally,the study discussed the impact of the number of slits and their orientation.This research further explains the coupling mechanism between the ABH-DVA and the controlled structure,and provides new ideas for the further application of ABH in engineering.