Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Eul...Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship...To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.展开更多
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite...The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction.展开更多
<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introdu...<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introducing intermediate variables, the original </span><span style="font-family:Verdana;">fourth-order problem is transformed into second-order partial differential equations, and the mixed finite volume element scheme is constructed, and the existence, uniqueness and convergence of the scheme are analyzed</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span><span><span style="font-family:Verdana;"> Numerical examples are provided to confirm the theoretical results. In the end, we test the value of <em>δ</em></span><span style="font-family:Verdana;"> to observe its influence on the model.</span></span></span>展开更多
Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three s...Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.展开更多
Aiming at the independent development of tracked vehicles,it is urgent to improve its mobility,passability and ride comfort,a new type of flexible road wheel with a“wheel-hinge-hub”combined structure is proposed in ...Aiming at the independent development of tracked vehicles,it is urgent to improve its mobility,passability and ride comfort,a new type of flexible road wheel with a“wheel-hinge-hub”combined structure is proposed in this study.The vibration model characteristics of the flexible road wheel were studied by the combination of numerical simulation and experiments.The superelasticity of rubber is obtained through uniaxial tensile experiment of the material and a detail three-dimensional nolinear finite element model of the flexible road wheel is established through finite element software ABAQUS.The free vibration equation of the flexible road wheel is solved by Lanczos vector direct superposition method,and its predicted modes and natural frequencies are compared with experimental results,which verifies the accuracy and reliability of the established finite element model.On this basis,the effects of various key structural or material factors on the natural frequencies of the flexible road wheel are studied using orthogonal experimental design method.Besides,the vibration modal characteristics of the flexible road wheel are also compared with those of the rigid road wheel.The research results provide a theoretical basis for the vibration and noise reduction of flexible road wheel.展开更多
In order to decrease the impact on shooting accuracy caused by human factors in the machine gun type approval testing,a new type testing gun mount system was developed to replace gunner to conduct the automatic shooti...In order to decrease the impact on shooting accuracy caused by human factors in the machine gun type approval testing,a new type testing gun mount system was developed to replace gunner to conduct the automatic shooting.The finite element model was first established and then the natural characteristics of the system were obtained by calculation.On basis of calculation results,the modal testing system was set up and the experimental points,including the exciting points and the measure points were determined.Finally,modal experiment of the system was carried out and the experimental modal parameters were obtained.The simulation and experiment results indicate that the dynamic characteristics of the system have a rational matching with the shooting frequency and the finite element model were well demonstrated.The study provides a new way for shooting accuracy test in type approval testing of firearms and possesses reference value for dynamic modification and optimization design.展开更多
文摘Viscoelastic foundation plays a very important role in civil engineering. It can effectively disperse the structural load into the foundation soil and avoid the damage caused by the concentrated load. The model of Euler-Bernoulli beam on viscoelastic Pasternak foundation can be used to analyze the deformation and response of buildings under complex geological conditions. In this paper, we use Hermite finite element method to get the numerical approximation scheme for the vibration equation of viscoelastic Pasternak foundation beam. Convergence and error estimation are rigourously established. We prove that the fully discrete scheme has convergence order O(τ2+h4), where τis time step size and his space step size. Finally, we give four numerical examples to verify the validity of theoretical analysis.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
基金Supported by the Research and Implementation of Sea Trial Technology(Grant No.2016YFC03000704).
文摘To control the vibration level of ships under construction,MSC Software’s Patran&Nastran modeling solutions can be used to establish a detailed finite element model of a new manned submersible support mother ship based on a line drawing,including the deck layout,bulkhead section,and stiffener distribution.After a comprehensive analysis of the ship simulation conditions,boundaries,and excitation forces of the main operating equipment,modal analysis and calculation of the ship vibration can be conducted.In this study,we calculated and analyzed the vibration response of key points in the stern area of the ship’s main deck and the submersible warehouse area under design loading working conditions.We then analyzed the vibration response of typical decks(including the compass deck,steering deck,captain’s deck,forecastle deck,and main deck)under the main excitation forces and moments(such as the full swing pod and generator sets).The analysis results showed that under DESIDEP working conditions,the vibration of each deck and key areas of the support mother ship could meet the vibration code requirements of the ship’s preliminary design(using the pod excitation and generator sets).Similarly,the vibration response of a scientific research ship under other loading conditions also met the requirements of the code and provided data support for a comprehensive understanding of the ship’s vibration and noise levels.Using actual vibration measurements,the accuracy of the vibration level simulations using finite element modeling was verified,the vibration of each area of the ship comfortably meeting the requirements of the China Classification Society.
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金This research is funded by the grants from the National Natural Science Foundation of China(Project Nos.11772158 and 11502113)the Fundamental Research Funds for Central Universities(Project No.30917011103).
文摘The construction of seaside facilities is a hot topic in the field of ocean engineering.In this paper,a new type of floating breakwater is designed by 3D-CAD geometric modeling.Based on the vibration theory and finite element tech-nology,the floating breakwater model is optimized,and the modal analysis of the structure with the bracket as main body and blades as functional attachments is carried out.Natural frequencies and mode shapes of the blades are fi rst calculated,and the effects of the natural frequencies in both dry and wet conditions are taken into account.Modal analysis and harmonic response analysis of the bracket with different lengths by removing the blades are also carried out,and the different var-iations of the natural frequencies between several bracket units are compared.The responses of the key position of the bracket under different loads and different bracket lengths are analyzed.The influence of liquid on the natural frequency of the blades and the influence of the length of the bracket on the natural fre-quency of the bracket are discussed in the fluid-solid coupling state.Research in this paper provides a data basis for the safety assessment of the breakwater construction.
文摘<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introducing intermediate variables, the original </span><span style="font-family:Verdana;">fourth-order problem is transformed into second-order partial differential equations, and the mixed finite volume element scheme is constructed, and the existence, uniqueness and convergence of the scheme are analyzed</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span><span><span style="font-family:Verdana;"> Numerical examples are provided to confirm the theoretical results. In the end, we test the value of <em>δ</em></span><span style="font-family:Verdana;"> to observe its influence on the model.</span></span></span>
文摘Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is investigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on natural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet’s size. Graphene exhibits the highest natural frequencies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.
基金the National Natural Science Foundation of China[grant numbers 11672127,51605215]the Advance Research Special Technology Project of Army Equipment[grant number AGA19001]+2 种基金the Army Research and Technology Project[grant number AQA19001],the Innovation Fund Project of China Aerospace 1st Academy[grant number CHC20001]the Special funded project of China Postdoctoral Science Foundation[grant number 2019T120450]the Fundamental Research Funds for the Central Universities[grant number NP2020407].
文摘Aiming at the independent development of tracked vehicles,it is urgent to improve its mobility,passability and ride comfort,a new type of flexible road wheel with a“wheel-hinge-hub”combined structure is proposed in this study.The vibration model characteristics of the flexible road wheel were studied by the combination of numerical simulation and experiments.The superelasticity of rubber is obtained through uniaxial tensile experiment of the material and a detail three-dimensional nolinear finite element model of the flexible road wheel is established through finite element software ABAQUS.The free vibration equation of the flexible road wheel is solved by Lanczos vector direct superposition method,and its predicted modes and natural frequencies are compared with experimental results,which verifies the accuracy and reliability of the established finite element model.On this basis,the effects of various key structural or material factors on the natural frequencies of the flexible road wheel are studied using orthogonal experimental design method.Besides,the vibration modal characteristics of the flexible road wheel are also compared with those of the rigid road wheel.The research results provide a theoretical basis for the vibration and noise reduction of flexible road wheel.
文摘In order to decrease the impact on shooting accuracy caused by human factors in the machine gun type approval testing,a new type testing gun mount system was developed to replace gunner to conduct the automatic shooting.The finite element model was first established and then the natural characteristics of the system were obtained by calculation.On basis of calculation results,the modal testing system was set up and the experimental points,including the exciting points and the measure points were determined.Finally,modal experiment of the system was carried out and the experimental modal parameters were obtained.The simulation and experiment results indicate that the dynamic characteristics of the system have a rational matching with the shooting frequency and the finite element model were well demonstrated.The study provides a new way for shooting accuracy test in type approval testing of firearms and possesses reference value for dynamic modification and optimization design.