期刊文献+
共找到1,287篇文章
< 1 2 65 >
每页显示 20 50 100
Longitudinal vibration characteristics of a tapered pipe pile considering the vertical support of surrounding soil and construction disturbance
1
作者 Li Zhenya Pan Yunchao +2 位作者 He Xianbin Lv Chong Mohammad Towhid 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期51-63,共13页
This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f... This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile. 展开更多
关键词 tapered pipe pile longitudinal vibration vertical support of the surrounding soil construction disturbance displacement impedance
下载PDF
Vibration control of fluid-conveying pipes: a state-of-the-art review 被引量:4
2
作者 Hu DING J.C.JI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1423-1456,共34页
Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications.They are subject to various excitations from the conveying fluids,the supporting structures,and ... Fluid-conveying pipes are widely used to transfer bulk fluids from one point to another in many engineering applications.They are subject to various excitations from the conveying fluids,the supporting structures,and the working environment,and thus are prone to vibrations such as flow-induced vibrations and acoustic-induced vibrations.Vibrations can generate variable dynamic stress and large deformation on fluid-conveying pipes,leading to vibration-induced fatigue and damage on the pipes,or even leading to failure of the entire piping system and catastrophic accidents.Therefore,the vibration control of fluid-conveying pipes is essential to ensure the integrity and safety of pipeline systems,and has attracted considerable attention from both researchers and engineers.The present paper aims to provide an extensive review of the state-of-the-art research on the vibration control of fluid-conveying pipes.The vibration analysis of fluid-conveying pipes is briefly discussed to show some key issues involved in the vibration analysis.Then,the research progress on the vibration control of fluid-conveying pipes is reviewed from four aspects in terms of passive control,active vibration control,semi-active vibration control,and structural optimization design for vibration reduction.Furthermore,the main results of existing research on the vibration control of fluid-conveying pipes are summarized,and future promising research directions are recommended to address the current research gaps.This paper contributes to the understanding of vibration control of fluid-conveying pipes,and will help the research work on the vibration control of fluidconveying pipes attract more attention. 展开更多
关键词 fuid-conveying pipe vibration passive control nonlinear energy sink(NES) active control semi-active control
下载PDF
A novel way for vibration control of FGM fluid-conveying pipes via NiTiNOL-steel wire rope 被引量:1
3
作者 Jian ZANG Ronghuan XIAO +1 位作者 Yewei ZHANG Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期877-896,共20页
In this study,a coupling model of fluid-conveying pipes made of functionally graded materials(FGMs)with NiTiNOL-steel(NiTi-ST)for vibration absorption is investigated.The vibration responses of the FGM fluid-conveying... In this study,a coupling model of fluid-conveying pipes made of functionally graded materials(FGMs)with NiTiNOL-steel(NiTi-ST)for vibration absorption is investigated.The vibration responses of the FGM fluid-conveying pipe with NiTi-ST are studied by the Galerkin truncation method(GTM)and harmonic balance method(HBM).The harmonic balance solutions and the numerical results are consistent.Also,the linearized stability of the structure is determined.The effects of the structure parameters on the absorption performance are also studied.The results show that the NiTi-ST is an effective means of vibration absorption.Furthermore,in studying the effect of the NiTi-ST,a closed detached response(CDR)is first observed.It is noteworthy that the CDR may dramatically change the vibration amplitude and that the parameters of the NiTi-ST may determine the emergence or disappearance of the CDR.This vibration absorption device can be extended to offer more general vibration control in engineering applications. 展开更多
关键词 NiTiNOL-steel(NiTi-ST) functionally graded material(FGM)fluid-conveying pipe vibration absorption harmonic balance method(HBM) closed detached response(CDR)
下载PDF
Enhanced vibration suppression and energy harvesting in fluid-conveying pipes
4
作者 Yang JIN Tianzhi YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第9期1487-1496,共10页
A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlin... A novel vibration absorber is designed to suppress vibrations in fluidconveying pipes subject to varying fluid speeds.The proposed absorber combines the fundamental principles of nonlinear energy sinks(NESs)and nonlinear energy harvesters(NEHs).The governing equation is derived,and a second-order discrete system is used to assess the performance of the developed device.The results demonstrate that the proposed absorber achieves significantly enhanced energy dissipation efficiency,reaching up to 95%,over a wider frequency range.Additionally,it successfully harvests additional electric energy.This research establishes a promising avenue for the development of new nonlinear devices aimed at suppressing fluid-conveying pipe vibrations across a broad frequency spectrum. 展开更多
关键词 fuid-conveying pipe vibration suppression nonlinear energy sink(NES) electromagnetic energy harvesting
下载PDF
Torsional vibration of a pipe pile in transversely isotropic saturated soil 被引量:8
5
作者 Zheng Changjie Hua Jianmin Ding Xuanming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期509-517,共9页
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, th... This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile. 展开更多
关键词 torsional vibration saturated soil pipe pile transversely isotropic medium
下载PDF
In-plane forced vibration of curved pipe conveying fluid by Green function method 被引量:7
6
作者 Qianli ZHAO Zhili SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第10期1397-1414,共18页
The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping r... The Green function method (GFM) is utilized to analyze the in-plane forced vibration of curved pipe conveying fluid, where the randomicity and distribution of the external excitation and the added mass and damping ratio are considered. The Laplace transform is used, and the Green functions with various boundary conditions are obtained subsequently. Numerical calculations are performed to validate the present solutions, and the effects of some key parameters on both tangential and radial displacements are further investigated. The forced vibration problems with linear and nonlinear motion constraints are also discussed briefly. The method can be radiated to study other forms of forced vibration problems related with pipes or more extensive issues. 展开更多
关键词 in-plane forced vibration curved pipe conveying fluid Green functionmethod (GFM) motion constraint
下载PDF
Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model 被引量:6
7
作者 R.Ansari R.Gholami +1 位作者 A.Norouzzadeh M.A.Darabi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期708-719,共12页
Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Tim... Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Timoshenko nanobeam.The equations of motion of the nanoscale pipe are obtained based on Hamilton's principle and the Gurtin-Murdoch continuum elasticity incorporating the surface stress effect.Afterwards,the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions.To what extent important parameters such as the thickness,material and surface stress modulus,residual surface stress,surface density,and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed. 展开更多
关键词 Fluid-conveying pipes vibration and instability Surface stress Gurtin-Murdoch elasticity continuum Generalized differential quadrature method
下载PDF
Vertical vibration of a large diameter pipe pile considering transverse inertia effect of pile 被引量:9
8
作者 郑长杰 刘汉龙 +1 位作者 丁选明 周航 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期891-897,共7页
Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by ... Considering the transverse inertia effect of pile, the vertical soil layer is studied. The wave propagations in the outer and inner soil dynamic response of a large diameter pipe pile in viscoelastic are simulated by three-dimensional elastodynamic theory and those in the pile are simulated by Rayleigh-Love rod theory. The vertical and radial displacements of the outer and inner soil are obtained by utilizing Laplace transform technique and differentiation on the governing equations of soils. Then, based on the continuous conditions between the pile and soils, the displacements of the pile are derived. The frequency domain velocity admittance and time domain velocity response of the pile top are also presented. The solution is compared to a classical rod model solution to verify the validity. The influences of the radii and Poisson ratio of pile on the transverse inertia effect of pile are analyzed. The parametric study shows that Poisson ratio and outer radius of pile have significant influence on the transverse inertia effect of large diameter pipe piles, while the inner radius has little effect. 展开更多
关键词 large diameter pipe pile vertical vibration Rayleigh-Love rod transverse inertia effect
下载PDF
Vibration of fluid-conveying pipe with nonlinear supports at both ends 被引量:3
9
作者 Sha WEI Xiong YAN +3 位作者 Xin FAN Xiaoye MAO Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第6期845-862,共18页
The axial fluid-induced vibration of pipes is very widespread in engineering applications.The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated.The ... The axial fluid-induced vibration of pipes is very widespread in engineering applications.The nonlinear forced vibration of a viscoelastic fluid-conveying pipe with nonlinear supports at both ends is investigated.The multi-scale method combined with the modal revision method is formulated for the fluid-conveying pipe system with nonlinear boundary conditions.The governing equations and the nonlinear boundary conditions are rescaled simultaneously as linear inhomogeneous equations and linear inhomogeneous boundary conditions on different time-scales.The modal revision method is used to transform the linear inhomogeneous boundary problem into a linear homogeneous boundary problem.The differential quadrature element method(DQEM)is used to verify the approximate analytical results.The results show good agreement between these two methods.A detailed analysis of the boundary nonlinearity is also presented.The obtained results demonstrate that the boundary nonlinearities have a significant effect on the dynamic characteristics of the fluid-conveying pipe,and can lead to significant differences in the dynamic responses of the pipe system. 展开更多
关键词 gyroscopic system fluid-conveying pipe transverse vibration nonlinear boundary
下载PDF
Theoretical and Experimental Investigation of Flexural Vibration Transfer Properties of High-Pressure Periodic Pipe 被引量:4
10
作者 魏振东 李宝仁 +1 位作者 杜经民 杨钢 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期68-71,共4页
According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We presen... According to the theory of phononic crystals, the hydraulic pipeline is designed to be a periodic structure composed of steel pipes and hoses to suppress the vibration of the hydraulic system with band gaps. We present theoretical and experimental investigations into the flexural vibration transfer properties of a high-pressure periodic pipe with the force on the inner pipe wall by oii pressure taken into consideration. The results show that the vibration attenuation of periodic pipe decreases along with the elevation of working pressure for the hydraulic system, and the band gaps in low frequency ranges move towards high frequency ranges. The periodic pipe has good vibration attenuation performance in the frequency range below 1000 Hz and the vibration of the hydraulic system is effectively suppressed. A11 the results are validated by experiment. The experimental results show a good agreement with the numerical calculations, thus the flexural vibration transfer properties of the high- pressure periodic pipe can be precisely calculated by taking the fluid structure interaction between the pipe and oil into consideration. This study provides an effective way for the vibration control of the hydraulic system. 展开更多
关键词 of on in Theoretical and Experimental Investigation of Flexural vibration Transfer Properties of High-Pressure Periodic pipe IS
下载PDF
Research on Horizontal Vibration of Heavy-Weight Drill Pipes in Directional Drilling 被引量:3
11
作者 Jiang Wei Wang Lan Engineer, Drilling Department of Bohai Oil Corp of CNOOC, Tanggu, 300452, Tianjin Engineer, Well Testing Company of Bohai Oil Corp of CNOOC, Tanggu, 300452, Tianjin 《China Ocean Engineering》 SCIE EI 1992年第4期403-414,共12页
The mode of load and deformation of directional drilling string and the expression of trigonometric series of deflection equation are established by means of elastic deformation energy and of the vertical and horizont... The mode of load and deformation of directional drilling string and the expression of trigonometric series of deflection equation are established by means of elastic deformation energy and of the vertical and horizontal bending. A calculation formula for natural frequency of horizontal resonance and rotational speed is derived based on the calculation method by Ritz, with which analysis is made for the cause and affecting factors of the excessive abrasion of heavy-weight drill pipe in high-angle holes so as to provide reference and basis for rational selection of drilling parameters and drilling tools in the future high-angle directional drilling. 展开更多
关键词 directional drilling heavy-weight drill pile drill pipe wornout horizontal vibration natural-frequency
下载PDF
Dynamical Stability of Cantilevered Pipe Conveying Fluid with Inerter-Based Dynamic Vibration Absorber 被引量:2
12
作者 Zhiyuan Liu Xin Tan +5 位作者 Xiaobo Liu Pingan Chen Ke Yi Tianzhi Yang Qiao Ni Lin Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期495-514,共20页
Cantilevered pipe conveying fluid may become unstable and flutter instability would occur when the velocity of the fluid flow in the pipe exceeds a critical value.In the present study,the theoretical model of a cantil... Cantilevered pipe conveying fluid may become unstable and flutter instability would occur when the velocity of the fluid flow in the pipe exceeds a critical value.In the present study,the theoretical model of a cantilevered fluid-conveying pipe attached by an inerter-based dynamic vibration absorber(IDVA)is proposed and the stability of this dynamical system is explored.Based on linear governing equations of the pipe and the IDVA,the effects of damping coefficient,weight,inerter,location and spring stiffness of the IDVAon the critical flow velocities of the pipe system is examined.It is shown that the stability of the pipe may be significantly affected by the IDVA.In many cases,the stability of the cantilevered pipe can be enhanced by designing the parameter values of the IDVA.By solving nonlinear governing equations of the dynamical system,the nonlinear oscillations of the pipe with IDVA for sufficiently high flow velocity beyond the critical value are determined,showing that the oscillation amplitudes of the pipe can also be suppressed to some extent with a suitable design of the IDVA. 展开更多
关键词 Cantilevered pipe conveying fluid inerter-based dynamic vibration absorber dynamic vibration absorber critical flow velocity nonlinear oscillation
下载PDF
Mode Transitions in Vortex-induced Vibrations of a Flexible Pipe near Plane Boundary 被引量:1
13
作者 Xiaochao Li YongxueWang +2 位作者 Guoyu Wang Meirong Jiang Ying Sun 《Journal of Marine Science and Application》 2013年第3期334-343,共10页
A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-domi... A pipe model with a mass ratio(mass/displaced mass) of 4.30 was tested to investigate the vortex-induced vibrations of submarine pipeline spans near the seabed.The pipe model was designed as a bending stiffness-dominated beam.The gap ratios(gap to diameter ratio) at the pipe ends were 4.0,6.0,and 8.0.The flow velocity was systematically varied in the 0-16.71 nondimensional velocity range based on the first natural frequency.The mode transition between the first and the second mode as the flow velocity increases was investigated.At various transition flow velocities,the research indicates that the peak frequencies with respect to displacement are not identical along the pipe,nor the frequencies associated with the peak of the amplitude spectra for the first four modes as well.The mode transition is associated with a continuous change in the amplitude,but there's a jump in frequency,and a gradual process along the pipe length. 展开更多
关键词 submarine pipeline span flexible pipe vortex-induced vibrations mode transition
下载PDF
Impact vibration properties of locally resonant fluid-conveying pipes 被引量:2
14
作者 Bing Hu Fu-Lei Zhu +4 位作者 Dian-Long Yu Jiang-Wei Liu Zhen-Fang Zhang Jie Zhong Ji-Hong Wen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期313-321,共9页
Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration an... Fluid-conveying pipe systems are widely used in various equipments to transport matter and energy.Due to the fluid–structure interaction effect,the fluid acting on the pipe wall is easy to produce strong vibration and noise,which have a serious influence on the safety and concealment of the equipment.Based on the theory of phononic crystals,this paper studies the vibration transfer properties of a locally resonant(LR)pipe under the condition of fluid–structure interaction.The band structure and the vibration transfer properties of a finite periodic pipe are obtained by the transfer matrix method.Further,the different impact excitation and fluid–structure interaction effect on the frequency range of vibration attenuation properties of the LR pipe are mainly considered and calculated by the finite element model.The results show that the existence of a low-frequency vibration bandgap in the LR pipe can effectively suppress the vibration propagation under external impact and fluid impact excitation,and the vibration reduction frequency range is near the bandgap under the fluid–structure interaction effect.Finally,the pipe impact experiment was performed to verify the effective attenuation of the LR structure to the impact excitation,and to validate the finite element model.The research results provide a technical reference for the vibration control of the fluid-conveying pipe systems that need to consider blast load and fluid impact. 展开更多
关键词 locally resonant pipe fluid-structure interaction transfer matrix method impact vibration properties
下载PDF
Vortex-Induced Vibrations of A Free-Spanning Pipe Based on A Nonlinear Hysteretic Soil Model at the Shoulders 被引量:1
15
作者 GAO Xi-feng XIE Wu-de XU Wan-hai 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期328-340,共13页
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculat... The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger. 展开更多
关键词 free-spanning pipe vortex-induced vibrations nonlinear hysteretic soil model bending stresses
下载PDF
Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes
16
作者 Donghai HAN Qi JIA +4 位作者 Yuanyu GAO Qiduo JIN Xin FANG Jihong WEN Dianlong YU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1821-1840,共20页
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me... To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes. 展开更多
关键词 fluid-conveying pipe acoustic metamaterial multi-directional vibration reduction local resonance
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
17
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Vortex-induced vibration of pipes conveying fluid using the method of multiple scales 被引量:1
18
作者 Huliang Dai Lin Wang 《Theoretical & Applied Mechanics Letters》 2012年第2期64-67,共4页
The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities un... The nonlinear dynamics of supported pipes conveying fluid subjected to vortex-induced vibration is evaluated using the method of multiple scales. Frequency response portraits for different internal fluid velocities under lock-in conditions are obtained and the stability of steady-state responses is discussed. Results show that the internal fluid velocity has a prominent effect on the oscillation amplitude and that the steady-state responses incorporating unstable solutions in the lock-in region are also obtained. In addition, the effects of two kinds of fluctuating lift coefficients on the steady-state responses are compared with each other. 展开更多
关键词 pipes conveying fluid vortex-induced vibration LOCK-IN steady-state responses fluctuat-ing lift
下载PDF
The Vibration Controllability of 20~# Steel Pipe Excited by Unsteady Flow
19
作者 寇子明 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1222-1226,共5页
An excited experiment system of 20# steel pipe was established with oil cylinder, 20# steel pipe, frequency converter, pump station and wave exciter generating unsteady flow artificially. The experimental results show... An excited experiment system of 20# steel pipe was established with oil cylinder, 20# steel pipe, frequency converter, pump station and wave exciter generating unsteady flow artificially. The experimental results showed that the 20# steel pipe could vibrate with the excitation of unsteady flows, and the vibration was periodic, instead of a harmonic one. Particles on the front and rear positions of pipe vibrated synchronously, and the vibration intensity of the pipe's two ends was greater than in the middle. System pressure and wave exciter's frequency had much influence upon pipe's amplitude. Pipe's vibration frequency was little affected by system pressure, and its value was close to the wave exciter's. Therefore, the active control of pipe's vibration can be realized by setting system pressure and adjusting frequency converter's frequency. 展开更多
关键词 unsteady flow steel pipe vibration control wave exciter
下载PDF
Vibration and Control of Pipes Conveying Fluid
20
作者 王世忠 沈毅 +1 位作者 葛升民 赵长江 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第3期85-91,共7页
The vibration and control of pipes conveying fluid is studied. The solid-liquid coupling vibration equations of the pipe conveying fluid are deduced by Hamilton principle.The direct velocity feedback is used to contro... The vibration and control of pipes conveying fluid is studied. The solid-liquid coupling vibration equations of the pipe conveying fluid are deduced by Hamilton principle.The direct velocity feedback is used to control the pipe vibration. The whip response and control are discussed. 展开更多
关键词 ss: pipe solid-fluid coupling vibration and control WHIP direct VELOCITY FEEDBACK
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部