A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexibl...A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. The proposed control design process is twofold: design of the attitude controller followed by the design of a flexible vibration attenuator. The attitude controller using only the attitude and the rate information for the flexible spacecraft (FS) is designed to serve two purposes: it forces the attitude motion onto a pre-selected sliding surface and then guides it to the state space origin. The shaped command input controller based on the CSVS method is designed for the reduction of the flexible mode vibration, which only requires information about the natural frequency and damping of the closed system. This information is used to discretize the input so that minimum energy is injected via the controller to the flexible modes of the spacecraft. Additionally, to extend the CSVS method to the system with the on-off actuators, the pulse-width pulse-frequency (PWPF) modulation is introduced to control the thruster firing and integrated with the CSVS method. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. The proposed control strategy has been implemented on a FS, which is a hub with symmetric cantilever flexible beam appendages and can undergo a single axis rotation. The results have been proven the potential of this technique to control FS.展开更多
Vibration mode based model reduction methods like Component Mode Synthesis (CMS) will be compared to methods coming from control engineering, namely moment matching (MM) and balanced truncation (BT). Conclusions based...Vibration mode based model reduction methods like Component Mode Synthesis (CMS) will be compared to methods coming from control engineering, namely moment matching (MM) and balanced truncation (BT). Conclusions based on the theory together with a numerical demonstration will be presented. The key issues on which the paper is focused are the reduction of metallic structures, the sensitivity of the reduced model to varying boundary conditions, full system response, accurate statics and the possibility to determine “a priori” the number of needed modes (trial vectors). These are important topics for the use of reduction methods in general and in particular for the implementation of FE models in multi body system dynamics where model reduction is widely used. The intention of this paper is to give insight into the methods nature and to clarify the strengths and limitations of the three methods. It turns out, that in the considered framework CMS delivers the best results together with a clear strategy for an “a priori” selection of the modes (trial vectors).展开更多
在纯立方非线性能量阱(Nonlinear Energy Sink,NES)的基础上引入弹磁元件,构成新型的弹磁强化非线性能量阱。建立含线性主振子和该非线性能量阱组成的系统的动力学方程,运用龙格库塔法对该非线性能量阱的动力学特征进行分析,并对比弹磁...在纯立方非线性能量阱(Nonlinear Energy Sink,NES)的基础上引入弹磁元件,构成新型的弹磁强化非线性能量阱。建立含线性主振子和该非线性能量阱组成的系统的动力学方程,运用龙格库塔法对该非线性能量阱的动力学特征进行分析,并对比弹磁强化非线性能量阱和纯立方刚度非线性能量阱的吸振性能,研究弹磁强化非线性能量阱参数对其吸振性能的影响。分析结果表明,弹磁强化非线性能量阱具有较好的减振效果;通过增大弹磁元件中永磁铁质量、半径以及线性弹簧的刚度系数,减小永磁铁初始间距,都可以优化其减振效果。但激励幅值较大时,振幅会在共振频率附近出现不稳定响应或者出现双峰现象。展开更多
文摘A generalized scheme based on the sliding mode and component synthesis vibration suppression (CSVS) method has been proposed for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. The proposed control design process is twofold: design of the attitude controller followed by the design of a flexible vibration attenuator. The attitude controller using only the attitude and the rate information for the flexible spacecraft (FS) is designed to serve two purposes: it forces the attitude motion onto a pre-selected sliding surface and then guides it to the state space origin. The shaped command input controller based on the CSVS method is designed for the reduction of the flexible mode vibration, which only requires information about the natural frequency and damping of the closed system. This information is used to discretize the input so that minimum energy is injected via the controller to the flexible modes of the spacecraft. Additionally, to extend the CSVS method to the system with the on-off actuators, the pulse-width pulse-frequency (PWPF) modulation is introduced to control the thruster firing and integrated with the CSVS method. PWPF modulation is a control method that provides pseudo-linear operation for an on-off thruster. The proposed control strategy has been implemented on a FS, which is a hub with symmetric cantilever flexible beam appendages and can undergo a single axis rotation. The results have been proven the potential of this technique to control FS.
文摘Vibration mode based model reduction methods like Component Mode Synthesis (CMS) will be compared to methods coming from control engineering, namely moment matching (MM) and balanced truncation (BT). Conclusions based on the theory together with a numerical demonstration will be presented. The key issues on which the paper is focused are the reduction of metallic structures, the sensitivity of the reduced model to varying boundary conditions, full system response, accurate statics and the possibility to determine “a priori” the number of needed modes (trial vectors). These are important topics for the use of reduction methods in general and in particular for the implementation of FE models in multi body system dynamics where model reduction is widely used. The intention of this paper is to give insight into the methods nature and to clarify the strengths and limitations of the three methods. It turns out, that in the considered framework CMS delivers the best results together with a clear strategy for an “a priori” selection of the modes (trial vectors).
文摘在纯立方非线性能量阱(Nonlinear Energy Sink,NES)的基础上引入弹磁元件,构成新型的弹磁强化非线性能量阱。建立含线性主振子和该非线性能量阱组成的系统的动力学方程,运用龙格库塔法对该非线性能量阱的动力学特征进行分析,并对比弹磁强化非线性能量阱和纯立方刚度非线性能量阱的吸振性能,研究弹磁强化非线性能量阱参数对其吸振性能的影响。分析结果表明,弹磁强化非线性能量阱具有较好的减振效果;通过增大弹磁元件中永磁铁质量、半径以及线性弹簧的刚度系数,减小永磁铁初始间距,都可以优化其减振效果。但激励幅值较大时,振幅会在共振频率附近出现不稳定响应或者出现双峰现象。