The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, ...The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one.展开更多
With respect to flows in a two-dimensional sudden expansion and contraction channel having a pair of cavities, numerical simulation was performed by imposing inlet/outlet boundary conditions giving a velocity distribu...With respect to flows in a two-dimensional sudden expansion and contraction channel having a pair of cavities, numerical simulation was performed by imposing inlet/outlet boundary conditions giving a velocity distribution to the inlet. Periodic flows have been reproduced, which have a discrete spectrum about frequency. A fundamental wave occupies most part of the disturbance components, but higher harmonic waves are also included. The disturbance is excited by Kelvin-Helmholtz instability in a cavity section, where only the fundamental wave is generated. A wavenumber is regulated by a channel length under a periodic boundary condition, but there is no restriction in a main flow direction under the inlet/outlet boundary conditions, and therefore, some wavenumbers can occur. Therefore, an arbitrary frequency component of disturbance is a synthesized wave composed of various wave numbers. There are two kinds of components constituting this synthesized wave: a maximum of a velocity distribution is near a wall and in the center of the channel, which are called as wall mode and central mode in linear stability analysis of the plane Poiseuille flow. The synthesized wave composed of some modes shows a tendency to lower wavenumbers at the center of the channel.展开更多
基金Science Council Under Grant No.NSC 89-2211-E-002-020
文摘The 2.5D finite/infinite element approach is adopted to study wave propagation problems caused by underground moving trains. The irregularities of the near field, including the tunnel structure and parts of the soil, are modeled by the finite elements, and the wave propagation properties of the far field extending to infinity are modeled by the infinite elements. One particular feature of the 2.5D approach is that it enables the computation of the three-dimensional response of the half-space, taking into account the load-moving effect, using only a two-dimensional profile. Although the 2.5D finite/infinite element approach shows a great advantage in studying the wave propagation caused by moving trains, attention should be given to the calculation aspects, such as the rules for mesh establishment, in order to avoid producing inaccurate or erroneous results. In this paper, some essential points for consideration in analysis are highlighted, along with techniques to enhance the speed of the calculations. All these observations should prove useful in making the 2.5D finite/infinite element approach an effective one.
文摘With respect to flows in a two-dimensional sudden expansion and contraction channel having a pair of cavities, numerical simulation was performed by imposing inlet/outlet boundary conditions giving a velocity distribution to the inlet. Periodic flows have been reproduced, which have a discrete spectrum about frequency. A fundamental wave occupies most part of the disturbance components, but higher harmonic waves are also included. The disturbance is excited by Kelvin-Helmholtz instability in a cavity section, where only the fundamental wave is generated. A wavenumber is regulated by a channel length under a periodic boundary condition, but there is no restriction in a main flow direction under the inlet/outlet boundary conditions, and therefore, some wavenumbers can occur. Therefore, an arbitrary frequency component of disturbance is a synthesized wave composed of various wave numbers. There are two kinds of components constituting this synthesized wave: a maximum of a velocity distribution is near a wall and in the center of the channel, which are called as wall mode and central mode in linear stability analysis of the plane Poiseuille flow. The synthesized wave composed of some modes shows a tendency to lower wavenumbers at the center of the channel.