The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi...The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo...Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.展开更多
The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the...The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials.展开更多
To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration charac...To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration characteristics were described when rated voltage was applied to the secondary side, and the primary side was connected with different load resistances. The largest amplitude positions on the upper bracket and tank surfaces were recorded by vibration sensors arranged on the surface. A data-acquisition platform was set up for signal measurement. The vibration amplitude related to frequency was discussed, and experimental results indicated that the position with the largest amplitude accrued in the middle of the upper bracket and tank surface, at phases a and c, respectively. The experimental results suggest that magnetostrictive and electrodynamic forces play a major role in exciting the vibration noise. At the same time, some rib-reinforcements were welded on the upper bracket and tank surfaces to lessen the vibration energy, which reduced the noise.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration a...A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.展开更多
Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR...Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.展开更多
By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteri...By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.展开更多
To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(d...To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.展开更多
Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non...Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.展开更多
Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. T...Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.展开更多
A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation p...A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.展开更多
In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzin...In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.展开更多
The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) ...The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise.展开更多
In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equat...In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equations are set up with considering kinematics conditions and continuous of fluid,the dynamics behavior of HEM including dynamic stiffness of fluid and transferability of HEM are studied here.The example of hydraulic engine mount is calculated,it is shown that the vibration reduction performance of the hydraulic engine mount of this paper is better.The analysis method of vibration reduction behavior for HEM in this paper can be used in designing of the reduction vibration devices and the HEM in this paper can be used in the practical engineering for reduction vibration.展开更多
Background: Cochlear implants (CI) are widely used to restore hearing in people with severe to profound hearing loss. However, optimizing CI performance, especially in difficult listening environments with background ...Background: Cochlear implants (CI) are widely used to restore hearing in people with severe to profound hearing loss. However, optimizing CI performance, especially in difficult listening environments with background noise, remains a major challenge. Understanding the influence of factors such as sound source position and electrode placement on CI stimulation patterns is critical to improving auditory perception. Methods: In this study, an analysis was conducted to investigate the influence of sound source position and electrode placement on CI stimulation patterns under noisy conditions. For this purpose, a special measurement setup with a CI speech processor-microphone test box was used to simulate realistic listening scenarios and measure CI performance. Results: The results show that the effectiveness of CI noise reduction systems is influenced by factors such as the position of the sound source and electrode placement. In particular, the beamforming ultra zoom mode showed significantly better noise reduction than the omnidirectional mode, especially under real listening conditions. Furthermore, differences in electrode responses indicate individual variability in the CI user experience, highlighting the importance of personalized fitting algorithms. Conclusions: The results demonstrate the importance of considering environmental factors and individual differences when optimizing CI performance. Future research efforts should focus on the development of personalized fitting algorithms and the exploration of innovative strategies, such as the integration of artificial intelligence, to improve CI functionality in different listening environments. This study contributes to our understanding of CI stimulation patterns and lays the foundation for improving auditory perception in CI users.展开更多
Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show e...Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show excellent perfor?mance in avoiding air?release and cavitation. This study aims to reduce the noise emitted from an axial piston pump using a novel valve plate utilizing damping holes. A dynamic pump model is developed,in which the fluid properties are carefully modeled to capture the phenomena of air release and cavitation. The causes of di erent noise sources are investigated using the model. A comprehensive parametric analysis is conducted to enhance the understanding of the e ects of the valve plate parameters on the noise sources. A multi?objective genetic algorithm optimization method is proposed to optimize the parameters of valve plate. The amplitudes of the swash plate moment and flow rates in the inlet and outlet ports are defined as the objective functions. The pressure overshoot and undershoot in the piston chamber are limited by properly constraining the highest and lowest pressure values. A comparison of the various noise sources between the original and optimized designs over a wide range of pressure levels shows that the noise sources are reduced at high pressures. The results of the sound pressure level measurements show that the optimized valve plate reduces the noise level by 1.6 d B(A) at the rated working condition. The proposed method is e ective in reducing the noise of axial piston pumps and contributes to the development of quieter axial piston machines.展开更多
A noise-reduction method with sliding called the local f-x Cadzow noise-reduction method, windows in the frequency-space (f-x) domain, is presented in this paper. This method is based on the assumption that the sign...A noise-reduction method with sliding called the local f-x Cadzow noise-reduction method, windows in the frequency-space (f-x) domain, is presented in this paper. This method is based on the assumption that the signal in each window is linearly predictable in the spatial direction while the random noise is not. For each Toeplitz matrix constructed by constant frequency slice, a singular value decomposition (SVD) is applied to separate signal from noise. To avoid edge artifacts caused by zero percent overlap between windows and to remove more noise, an appropriate overlap is adopted. Besides flat and dipping events, this method can enhance curved and conflicting events. However, it is not suitable for seismic data that contains big spikes or null traces. It is also compared with the SVD, f-x deconvolution, and Cadzow method without windows. The comparison results show that the local Cadzow method performs well in removing random noise and preserving signal. In addition, a real data example proves that it is a potential noise-reduction technique for seismic data obtained in areas of complex formations.展开更多
Noise reduction in a shop floor is one of the important parts of greenmanufacturing. In a shop floor machine tools are the main noise sources in a shop floor. A newapproach is discovered by investigation that the nois...Noise reduction in a shop floor is one of the important parts of greenmanufacturing. In a shop floor machine tools are the main noise sources in a shop floor. A newapproach is discovered by investigation that the noise can be obviously reduced in a shop floor byoptimizing the scheduling between work pieces and machine tools. Based on the discovery, a newmethod of noise reduction is proposed. A noise reduction scheduling model in a shop floor isestablished, and the application of the model is also discussed. A case is studied, which shows thatthe method and model are practical.展开更多
基金Project(51978585)supported by the National Natural Science Foundation,ChinaProject(2022YFB2603404)supported by the National Key Research and Development Program,China+1 种基金Project(U1734207)supported by the High-speed Rail Joint Fund Key Projects of Basic Research,ChinaProject(2023NSFSC1975)supported by the Sichuan Nature and Science Foundation Innovation Research Group Project,China。
文摘The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金supported by the Key R&D Program of Shandong Province(2021CXGC010210).
文摘Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.
基金supported by the National Natural Science Foundation of China(Nos.52241103,52322505,and 11991032)the Natural Science Foundation of Hunan Province of China(No.2023JJ10055)。
文摘The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials.
基金Supported by the National Natural Science Foundation of China(No.51277131)the National Basic Research Program of China("973" Program,No.2014CB239501 and No.2014CB239506)
文摘To understand the vibration noise behaviors of amorphous metal alloy core distribution transformer(AMACDT), a 10 k VA prototype was tested under no-load and short-circuit conditions, respectively. The vibration characteristics were described when rated voltage was applied to the secondary side, and the primary side was connected with different load resistances. The largest amplitude positions on the upper bracket and tank surfaces were recorded by vibration sensors arranged on the surface. A data-acquisition platform was set up for signal measurement. The vibration amplitude related to frequency was discussed, and experimental results indicated that the position with the largest amplitude accrued in the middle of the upper bracket and tank surface, at phases a and c, respectively. The experimental results suggest that magnetostrictive and electrodynamic forces play a major role in exciting the vibration noise. At the same time, some rib-reinforcements were welded on the upper bracket and tank surfaces to lessen the vibration energy, which reduced the noise.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金Project supported by the National Natural Science Foundation of China(Nos.11972050 and 12332001)。
文摘A multi-degree-of-freedom device is proposed,which can achieve efficient vibration reduction as the main objective and energy harvesting as the secondary purpose.The device comprises a multiscale nonlinear vibration absorber(NVA)and piezoelectric components.Energy conversion and energy measurement methods are used to evaluate the device performance from multiple perspectives.Research has shown that this device can efficiently transfer transient energy from the main structure and convert a portion of transient energy into electrical energy.Main resonance and higher-order resonance are the main reasons for efficient energy transfer.The device can maintain high vibration reduction performance even when the excitation amplitude changes over a large range.Compared with the single structures with and without precompression,the multiscale NVA-piezoelectric device offers significant vibration reduction advantages.In addition,there are significant differences in the parameter settings of the two substructures for vibration reduction and energy harvesting.
基金Project supported by the Xing Dian Talents Support Project of Yunnan Province(Grant No.YNWR-QNBJ-2018-0040)the Youth Project of Applied Basic Research of Yunnan Science(Grant No.202201AU070062)the Yunnan University’s Research Innovation Fund for Graduate Students(Grant No.KC-22221171).
文摘Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.
基金Project supported by the National Natural Science Foundation of China (No. 12272087)。
文摘By considering electromechanical coupling, a unified dynamic model of the cylindrical shell with the piezoelectric shunt damping patch(PSDP) is created. The model is universal and can simulate the vibration characteristic of the shell under different states including the states in which PSDP cannot be connected, partially connected, and completely connected to the shunt circuit. The equivalent loss factor and elastic modulus with frequency dependence are proposed to consider the electrical damping effect of resistance shunt circuits. Moreover, the semi-analytical dynamic equation of the cylindrical shell with PSDP is derived by the Lagrange equation. An experimental test is carried out on the cylindrical shell with PSDP to verify the vibration suppression ability of PSDP on the cylindrical shell and the correctness of the proposed model. Furthermore, the parameter analysis shows that determining the appropriate resistance value in the shunt circuit can achieve a good vibration suppression effect.
基金supported by the National Natural Science Foundation Project under Grant Numbers[51966018,51466015].
文摘To reduce the vibration and aerodynamic noise of wind turbines,a new design is proposed relying on a blade with a bifurcated apex or tip.The performances of this wind turbine wheel are tested at the entrance of a DC(direct-action)wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads.The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration fre-quency of the wind wheel.At the same time,the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating fundamental frequency of the wind wheel.According to all thesefindings,the tip angle of the bifurcated apex is the main factor enhancing the effect of the modification.
基金the National Natural Science Foundation of China(No.12072118)the Natural Science Funds for Distinguished Young Scholar of Fujian Province of China(No.2021J06024)the Project for Youth Innovation Fund of Xiamen of China(No.3502Z20206005)。
文摘Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.
文摘Smart material and structure (SMS) is a challenging novel technique for the 21 century especially in fields of aviation and aerospace. Vibration and noise suppression smart structure is an important branch of SMS. There are several typical structures such as the cabin of an airplane, space station, the solar board of satellite and the rotor blade of a helicopter, of which the vibrations and radiation noises have bad influences on precise equipments and aiming systems. In order to suppress vibrations and noises of these structures, several algorithms are applied to the models which simulate the structures. Experiments are performed to suppress vibrations and noises by bonding sensors and actuators to the structures at the optimized locations and using computer based measurement and control systems. For the blade vibration control of a helicopter, a non contact method of signal transmission by magneto electric coupling is discussed. The experimental results demonstrate that the methods used for active control are effective.
基金The National Science and Technology Major Project(No.2012ZX03004005-003)the National Natural Science Foundation of China(No.61171081,61201175)the Innovation Technology Fund of Jiangsu Province(No.BC2012006)
文摘A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.
基金The project was commissioned and supported by the funding of the Federal Office of Environment(No.1337000438).
文摘In this article,we consider the numerical prediction of the noise emission from a wheelset in laboratory conditions.We focus on the fluid-structure interaction leading to sound emission in the fluid domain by analyzing three different methods to account for acoustic sources.These are a discretized baffled piston using the discrete calculation method(DCM),a closed cylindrical volume using the boundary element method(BEM)and radiating elastic disks in a cubic enclosure solved with the finite element method(FEM).We provide the validation of the baffled piston and the BEM using measurements of the noise emission of a railway wheel by considering ground reflections in the numerical models.Selected space-resolved waveforms are compared with experimental results as well as with a fluid-structure interaction finite element model.The computational advantage of a discretized disk mounted on a baffle and BEM compared to FEM is highlighted,and the baffled pistons limitations caused by a lack of edge radiation effects are investigated.
文摘The structure and the acoustic medium of a passenger vehicle are modeled using the finite element method(FEM), and the interior noise is studied the help of the modal synthesis method (MSM). Sound pressure level (Lp) of the noise is calculated in several conditions of the models, and has good agreements with its test results. The MSM am be consequently used for predicting the vehicle interior noise in dssign stage so that the structure may be optimized for the Purpose of the most reduction of noise.
基金Supported by National Fund Committee for Study Abroad
文摘In this paper,the metal hydraulic engine mount (HEM) with the orifice is presented,the construction of HEM is consist of hydraulic cylinder and the spring on the bottom,its mechanical model is given and dynamics equations are set up with considering kinematics conditions and continuous of fluid,the dynamics behavior of HEM including dynamic stiffness of fluid and transferability of HEM are studied here.The example of hydraulic engine mount is calculated,it is shown that the vibration reduction performance of the hydraulic engine mount of this paper is better.The analysis method of vibration reduction behavior for HEM in this paper can be used in designing of the reduction vibration devices and the HEM in this paper can be used in the practical engineering for reduction vibration.
文摘Background: Cochlear implants (CI) are widely used to restore hearing in people with severe to profound hearing loss. However, optimizing CI performance, especially in difficult listening environments with background noise, remains a major challenge. Understanding the influence of factors such as sound source position and electrode placement on CI stimulation patterns is critical to improving auditory perception. Methods: In this study, an analysis was conducted to investigate the influence of sound source position and electrode placement on CI stimulation patterns under noisy conditions. For this purpose, a special measurement setup with a CI speech processor-microphone test box was used to simulate realistic listening scenarios and measure CI performance. Results: The results show that the effectiveness of CI noise reduction systems is influenced by factors such as the position of the sound source and electrode placement. In particular, the beamforming ultra zoom mode showed significantly better noise reduction than the omnidirectional mode, especially under real listening conditions. Furthermore, differences in electrode responses indicate individual variability in the CI user experience, highlighting the importance of personalized fitting algorithms. Conclusions: The results demonstrate the importance of considering environmental factors and individual differences when optimizing CI performance. Future research efforts should focus on the development of personalized fitting algorithms and the exploration of innovative strategies, such as the integration of artificial intelligence, to improve CI functionality in different listening environments. This study contributes to our understanding of CI stimulation patterns and lays the foundation for improving auditory perception in CI users.
基金Supported by National Basic Research Program of China(Grant No.2014CB046403)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ14E050005)
文摘Current researches mainly focus on the investigations of the valve plate utilizing pressure relief grooves. However,air?release and cavitation can occur near the grooves. The valve plate utilizing damping holes show excellent perfor?mance in avoiding air?release and cavitation. This study aims to reduce the noise emitted from an axial piston pump using a novel valve plate utilizing damping holes. A dynamic pump model is developed,in which the fluid properties are carefully modeled to capture the phenomena of air release and cavitation. The causes of di erent noise sources are investigated using the model. A comprehensive parametric analysis is conducted to enhance the understanding of the e ects of the valve plate parameters on the noise sources. A multi?objective genetic algorithm optimization method is proposed to optimize the parameters of valve plate. The amplitudes of the swash plate moment and flow rates in the inlet and outlet ports are defined as the objective functions. The pressure overshoot and undershoot in the piston chamber are limited by properly constraining the highest and lowest pressure values. A comparison of the various noise sources between the original and optimized designs over a wide range of pressure levels shows that the noise sources are reduced at high pressures. The results of the sound pressure level measurements show that the optimized valve plate reduces the noise level by 1.6 d B(A) at the rated working condition. The proposed method is e ective in reducing the noise of axial piston pumps and contributes to the development of quieter axial piston machines.
基金support from the National Key Basic Research Development Program(Grant No.2007CB209600)National Major Science and Technology Program(Grant No.2008ZX05010-002)
文摘A noise-reduction method with sliding called the local f-x Cadzow noise-reduction method, windows in the frequency-space (f-x) domain, is presented in this paper. This method is based on the assumption that the signal in each window is linearly predictable in the spatial direction while the random noise is not. For each Toeplitz matrix constructed by constant frequency slice, a singular value decomposition (SVD) is applied to separate signal from noise. To avoid edge artifacts caused by zero percent overlap between windows and to remove more noise, an appropriate overlap is adopted. Besides flat and dipping events, this method can enhance curved and conflicting events. However, it is not suitable for seismic data that contains big spikes or null traces. It is also compared with the SVD, f-x deconvolution, and Cadzow method without windows. The comparison results show that the local Cadzow method performs well in removing random noise and preserving signal. In addition, a real data example proves that it is a potential noise-reduction technique for seismic data obtained in areas of complex formations.
文摘Noise reduction in a shop floor is one of the important parts of greenmanufacturing. In a shop floor machine tools are the main noise sources in a shop floor. A newapproach is discovered by investigation that the noise can be obviously reduced in a shop floor byoptimizing the scheduling between work pieces and machine tools. Based on the discovery, a newmethod of noise reduction is proposed. A noise reduction scheduling model in a shop floor isestablished, and the application of the model is also discussed. A case is studied, which shows thatthe method and model are practical.