Taking the bending stiffness, static sag, and geometric non-linearity into consideration, the space nonlinear vibration partial differential equations were derived. The partical differential equations were discretized...Taking the bending stiffness, static sag, and geometric non-linearity into consideration, the space nonlinear vibration partial differential equations were derived. The partical differential equations were discretized in space by finite center difference approximation, then the nonlinear ordinal differential equations were obtained. A hybrid method involving the combination of the Newmark method and the pseudo-force strategy was proposed to analyze the nonlinear transient response of the inclined cable-dampers system subjected to arbitrary dynamic loading. As an example, two typical stay cables were calculated by the present method. The results reveal both the validity and the deficiency of the viscoelasticity damper for vibration control of stay cables. The efficiency and accuracy of the proposed method is also verified by comparing the results with those obtained by using Runge-Kutta direct integration technique. A new time history analysis method is provided for the research on the stay cable vibration control.展开更多
Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple fre...Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.展开更多
In many cases, the cutting method is usually adopted for the efficient machining of non-circular body of revolution and a feed drive is needed to actuate the cutting tool to and fro according to input signal wave. The...In many cases, the cutting method is usually adopted for the efficient machining of non-circular body of revolution and a feed drive is needed to actuate the cutting tool to and fro according to input signal wave. The feed drive for the purpose is required of fast response and accurate positioning. Both of these are highly dependent upon the actuating elements. Several schemes of actuation are specially interested. One is the introduction of piezoelectric actuation. However, the tiny working stroke of the piezoelectric material limits its application to a narrow range. Another is the application of electro-magnetic actuator. An innovative feed drive actuated by the stepper motor is introduced for the purpose. For a conventional step operating mode, a stepper motor can only be controlled to position at finite discrete points. Thus, when it is applied as an actuator of the feed drive, it is very difficult to maintain high accuracy and fast response. To eliminate quantitative error, the stepper motor is controlled under the continual mode. It is achieved with a micro-controller system and a built-in control algorithm program, called "tracking algorithm". Within each sampling cycle, the micro-controller will sample the input signal and the time interval will be divided into two parts according to the relative position between two adjacent stepping points. The phase coils correspondent to the two adjacent stepping points are energized respectively with calculated time duration. In the way, the motion of the tool frame smoothly tracks the input signal. This paper presents modeling and identification of frequency response of the proposed drive. The dynamic response of the feed drive is manly decided by the natural frequency of the stepper motor. For the conventional small-size stepper motors, the natural frequency is within the range 200~400 Hz. Experimental results show that the stepper motor actuated tool frame can smoothly keep in track of the input signal wave under "tracking control". The bandwidth of frequency of the feed drive exceeds 310 Hz.展开更多
文摘Taking the bending stiffness, static sag, and geometric non-linearity into consideration, the space nonlinear vibration partial differential equations were derived. The partical differential equations were discretized in space by finite center difference approximation, then the nonlinear ordinal differential equations were obtained. A hybrid method involving the combination of the Newmark method and the pseudo-force strategy was proposed to analyze the nonlinear transient response of the inclined cable-dampers system subjected to arbitrary dynamic loading. As an example, two typical stay cables were calculated by the present method. The results reveal both the validity and the deficiency of the viscoelasticity damper for vibration control of stay cables. The efficiency and accuracy of the proposed method is also verified by comparing the results with those obtained by using Runge-Kutta direct integration technique. A new time history analysis method is provided for the research on the stay cable vibration control.
基金Program for New Century Excellent Talents in Universities Under Grant No.NCET-04-0325
文摘Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.
文摘In many cases, the cutting method is usually adopted for the efficient machining of non-circular body of revolution and a feed drive is needed to actuate the cutting tool to and fro according to input signal wave. The feed drive for the purpose is required of fast response and accurate positioning. Both of these are highly dependent upon the actuating elements. Several schemes of actuation are specially interested. One is the introduction of piezoelectric actuation. However, the tiny working stroke of the piezoelectric material limits its application to a narrow range. Another is the application of electro-magnetic actuator. An innovative feed drive actuated by the stepper motor is introduced for the purpose. For a conventional step operating mode, a stepper motor can only be controlled to position at finite discrete points. Thus, when it is applied as an actuator of the feed drive, it is very difficult to maintain high accuracy and fast response. To eliminate quantitative error, the stepper motor is controlled under the continual mode. It is achieved with a micro-controller system and a built-in control algorithm program, called "tracking algorithm". Within each sampling cycle, the micro-controller will sample the input signal and the time interval will be divided into two parts according to the relative position between two adjacent stepping points. The phase coils correspondent to the two adjacent stepping points are energized respectively with calculated time duration. In the way, the motion of the tool frame smoothly tracks the input signal. This paper presents modeling and identification of frequency response of the proposed drive. The dynamic response of the feed drive is manly decided by the natural frequency of the stepper motor. For the conventional small-size stepper motors, the natural frequency is within the range 200~400 Hz. Experimental results show that the stepper motor actuated tool frame can smoothly keep in track of the input signal wave under "tracking control". The bandwidth of frequency of the feed drive exceeds 310 Hz.